Skip to content

vllm.compilation.backends

_on_compilation_complete_callback module-attribute

_on_compilation_complete_callback: ContextVar[
    Callable[[], None] | None
] = ContextVar(
    "on_compilation_complete_callback", default=None
)

compilation_start_time module-attribute

compilation_start_time = 0.0

logger module-attribute

logger = init_logger(__name__)

model_is_encoder module-attribute

model_is_encoder: bool = False

model_tag module-attribute

model_tag: str = 'backbone'

CompilerManager

A manager to manage the compilation process, including caching the compiled graph, loading the compiled graph, and compiling the graph.

The cache is a dict mapping (runtime_shape, graph_index, backend_name) to any_data returned from the compiler.

When serializing the cache, we save it to a Python file for readability. We don't use json here because json doesn't support int as key.

Source code in vllm/compilation/backends.py
class CompilerManager:
    """
    A manager to manage the compilation process, including
    caching the compiled graph, loading the compiled graph,
    and compiling the graph.

    The cache is a dict mapping
    `(runtime_shape, graph_index, backend_name)`
    to `any_data` returned from the compiler.

    When serializing the cache, we save it to a Python file
    for readability. We don't use json here because json doesn't
    support int as key.
    """

    def __init__(self, compilation_config: CompilationConfig) -> None:
        self.cache: dict[tuple[Range, int, str], Any] = dict()
        self.is_cache_updated = False
        self.compilation_config = compilation_config
        self.compiler = make_compiler(compilation_config)

    def compute_hash(self, vllm_config: VllmConfig) -> str:
        return self.compiler.compute_hash(vllm_config)

    @contextmanager
    def compile_context(self, compile_range: Range) -> Generator[None, None, None]:
        """Provide compilation context for the duration of compilation to set
        any torch global properties we want to scope to a single Inductor
        compilation (e.g. partition rules, pass context)."""
        with pass_context(compile_range):
            if self.compilation_config.use_inductor_graph_partition:
                with inductor_partition_rule_context(
                    self.compilation_config.splitting_ops
                ):
                    yield
            else:
                yield

    def initialize_cache(
        self, cache_dir: str, disable_cache: bool = False, prefix: str = ""
    ) -> None:
        """
        Initialize the cache directory for the compiler.

        The organization of the cache directory is as follows:
        cache_dir=/path/to/hash_str/rank_i_j/prefix/
        inside cache_dir, there will be:
        - vllm_compile_cache.py
        - computation_graph.py
        - transformed_code.py

        for multiple prefixes, they can share the same
        base cache dir of /path/to/hash_str/rank_i_j/ ,
        to store some common compilation artifacts.
        """

        self.disable_cache = disable_cache
        self.cache_dir = cache_dir
        self.cache_file_path = os.path.join(cache_dir, "vllm_compile_cache.py")

        if not disable_cache and os.path.exists(self.cache_file_path):
            # load the cache from the file
            with open(self.cache_file_path) as f:
                # we use ast.literal_eval to parse the data
                # because it is a safe way to parse Python literals.
                # do not use eval(), it is unsafe.
                cache = ast.literal_eval(f.read())

            def check_type(value: Any, ty: type) -> None:
                if not isinstance(value, ty):
                    raise TypeError(f"Expected {ty} but got {type(value)} for {value}")

            def parse_key(key: Any) -> tuple[Range, int, str]:
                range_tuple, graph_index, compiler_name = key
                check_type(graph_index, int)
                check_type(compiler_name, str)
                if isinstance(range_tuple, tuple):
                    start, end = range_tuple
                    check_type(start, int)
                    check_type(end, int)
                    range_tuple = Range(start=start, end=end)
                check_type(range_tuple, Range)
                return range_tuple, graph_index, compiler_name

            self.cache = {parse_key(key): value for key, value in cache.items()}

        self.compiler.initialize_cache(
            cache_dir=cache_dir, disable_cache=disable_cache, prefix=prefix
        )

    def save_to_file(self) -> None:
        if self.disable_cache or not self.is_cache_updated:
            return
        printer = pprint.PrettyPrinter(indent=4)
        data = printer.pformat(self.cache)
        with open(self.cache_file_path, "w") as f:
            f.write(data)

    def load(
        self,
        graph: fx.GraphModule,
        example_inputs: list[Any],
        graph_index: int,
        compile_range: Range,
    ) -> Callable[..., Any] | None:
        if (compile_range, graph_index, self.compiler.name) not in self.cache:
            return None
        handle = self.cache[(compile_range, graph_index, self.compiler.name)]
        compiled_graph = self.compiler.load(
            handle, graph, example_inputs, graph_index, compile_range
        )
        logger.debug(
            "Directly load the %s-th graph for compile range %sfrom %s via handle %s",
            graph_index,
            str(compile_range),
            self.compiler.name,
            handle,
        )
        return compiled_graph

    def compile(
        self,
        graph: fx.GraphModule,
        example_inputs: list[Any],
        additional_inductor_config: dict[str, Any],
        compilation_config: CompilationConfig,
        compile_range: Range,
        graph_index: int = 0,
        num_graphs: int = 1,
    ) -> Any:
        if graph_index == 0:
            # before compiling the first graph, record the start time
            global compilation_start_time
            compilation_start_time = time.time()

        compilation_counter.num_backend_compilations += 1

        compiled_graph = None

        # try to load from the cache
        compiled_graph = self.load(graph, example_inputs, graph_index, compile_range)
        if compiled_graph is not None:
            if graph_index == num_graphs - 1:
                # after loading the last graph for this shape, record the time.
                # there can be multiple graphs due to piecewise compilation.
                now = time.time()
                elapsed = now - compilation_start_time
                compilation_config.compilation_time += elapsed
                logger.info(
                    "Directly load the compiled graph(s) for compile range %s "
                    "from the cache, took %.3f s",
                    str(compile_range),
                    elapsed,
                )
            return compiled_graph

        # no compiler cached the graph, or the cache is disabled,
        # we need to compile it
        if isinstance(self.compiler, InductorAdaptor):
            # Let compile_fx generate a key for us
            maybe_key = None
        else:
            maybe_key = "artifact_compile_range_"
            maybe_key += f"{compile_range.start}_{compile_range.end}"
            maybe_key += f"_subgraph_{graph_index}"
        with self.compile_context(compile_range):
            compiled_graph, handle = self.compiler.compile(
                graph,
                example_inputs,
                additional_inductor_config,
                compile_range,
                maybe_key,
            )

        assert compiled_graph is not None, "Failed to compile the graph"

        # store the artifact in the cache
        if is_compile_cache_enabled(additional_inductor_config) and handle is not None:
            self.cache[(compile_range, graph_index, self.compiler.name)] = handle
            compilation_counter.num_cache_entries_updated += 1
            self.is_cache_updated = True
            if graph_index == 0:
                # adds some info logging for the first graph
                logger.info_once(
                    "Cache the graph of compile range %s for later use",
                    str(compile_range),
                )
            logger.debug(
                "Store the %s-th graph for compile range%s from %s via handle %s",
                graph_index,
                str(compile_range),
                self.compiler.name,
                handle,
            )

        # after compiling the last graph, record the end time
        if graph_index == num_graphs - 1:
            now = time.time()
            elapsed = now - compilation_start_time
            compilation_config.compilation_time += elapsed
            logger.info_once(
                "Compiling a graph for compile range %s takes %.2f s",
                str(compile_range),
                elapsed,
                scope="local",
            )

        return compiled_graph

cache instance-attribute

cache: dict[tuple[Range, int, str], Any] = dict()

compilation_config instance-attribute

compilation_config = compilation_config

compiler instance-attribute

compiler = make_compiler(compilation_config)

is_cache_updated instance-attribute

is_cache_updated = False

__init__

__init__(compilation_config: CompilationConfig) -> None
Source code in vllm/compilation/backends.py
def __init__(self, compilation_config: CompilationConfig) -> None:
    self.cache: dict[tuple[Range, int, str], Any] = dict()
    self.is_cache_updated = False
    self.compilation_config = compilation_config
    self.compiler = make_compiler(compilation_config)

compile

compile(
    graph: GraphModule,
    example_inputs: list[Any],
    additional_inductor_config: dict[str, Any],
    compilation_config: CompilationConfig,
    compile_range: Range,
    graph_index: int = 0,
    num_graphs: int = 1,
) -> Any
Source code in vllm/compilation/backends.py
def compile(
    self,
    graph: fx.GraphModule,
    example_inputs: list[Any],
    additional_inductor_config: dict[str, Any],
    compilation_config: CompilationConfig,
    compile_range: Range,
    graph_index: int = 0,
    num_graphs: int = 1,
) -> Any:
    if graph_index == 0:
        # before compiling the first graph, record the start time
        global compilation_start_time
        compilation_start_time = time.time()

    compilation_counter.num_backend_compilations += 1

    compiled_graph = None

    # try to load from the cache
    compiled_graph = self.load(graph, example_inputs, graph_index, compile_range)
    if compiled_graph is not None:
        if graph_index == num_graphs - 1:
            # after loading the last graph for this shape, record the time.
            # there can be multiple graphs due to piecewise compilation.
            now = time.time()
            elapsed = now - compilation_start_time
            compilation_config.compilation_time += elapsed
            logger.info(
                "Directly load the compiled graph(s) for compile range %s "
                "from the cache, took %.3f s",
                str(compile_range),
                elapsed,
            )
        return compiled_graph

    # no compiler cached the graph, or the cache is disabled,
    # we need to compile it
    if isinstance(self.compiler, InductorAdaptor):
        # Let compile_fx generate a key for us
        maybe_key = None
    else:
        maybe_key = "artifact_compile_range_"
        maybe_key += f"{compile_range.start}_{compile_range.end}"
        maybe_key += f"_subgraph_{graph_index}"
    with self.compile_context(compile_range):
        compiled_graph, handle = self.compiler.compile(
            graph,
            example_inputs,
            additional_inductor_config,
            compile_range,
            maybe_key,
        )

    assert compiled_graph is not None, "Failed to compile the graph"

    # store the artifact in the cache
    if is_compile_cache_enabled(additional_inductor_config) and handle is not None:
        self.cache[(compile_range, graph_index, self.compiler.name)] = handle
        compilation_counter.num_cache_entries_updated += 1
        self.is_cache_updated = True
        if graph_index == 0:
            # adds some info logging for the first graph
            logger.info_once(
                "Cache the graph of compile range %s for later use",
                str(compile_range),
            )
        logger.debug(
            "Store the %s-th graph for compile range%s from %s via handle %s",
            graph_index,
            str(compile_range),
            self.compiler.name,
            handle,
        )

    # after compiling the last graph, record the end time
    if graph_index == num_graphs - 1:
        now = time.time()
        elapsed = now - compilation_start_time
        compilation_config.compilation_time += elapsed
        logger.info_once(
            "Compiling a graph for compile range %s takes %.2f s",
            str(compile_range),
            elapsed,
            scope="local",
        )

    return compiled_graph

compile_context

compile_context(
    compile_range: Range,
) -> Generator[None, None, None]

Provide compilation context for the duration of compilation to set any torch global properties we want to scope to a single Inductor compilation (e.g. partition rules, pass context).

Source code in vllm/compilation/backends.py
@contextmanager
def compile_context(self, compile_range: Range) -> Generator[None, None, None]:
    """Provide compilation context for the duration of compilation to set
    any torch global properties we want to scope to a single Inductor
    compilation (e.g. partition rules, pass context)."""
    with pass_context(compile_range):
        if self.compilation_config.use_inductor_graph_partition:
            with inductor_partition_rule_context(
                self.compilation_config.splitting_ops
            ):
                yield
        else:
            yield

compute_hash

compute_hash(vllm_config: VllmConfig) -> str
Source code in vllm/compilation/backends.py
def compute_hash(self, vllm_config: VllmConfig) -> str:
    return self.compiler.compute_hash(vllm_config)

initialize_cache

initialize_cache(
    cache_dir: str,
    disable_cache: bool = False,
    prefix: str = "",
) -> None

Initialize the cache directory for the compiler.

The organization of the cache directory is as follows: cache_dir=/path/to/hash_str/rank_i_j/prefix/ inside cache_dir, there will be: - vllm_compile_cache.py - computation_graph.py - transformed_code.py

for multiple prefixes, they can share the same base cache dir of /path/to/hash_str/rank_i_j/ , to store some common compilation artifacts.

Source code in vllm/compilation/backends.py
def initialize_cache(
    self, cache_dir: str, disable_cache: bool = False, prefix: str = ""
) -> None:
    """
    Initialize the cache directory for the compiler.

    The organization of the cache directory is as follows:
    cache_dir=/path/to/hash_str/rank_i_j/prefix/
    inside cache_dir, there will be:
    - vllm_compile_cache.py
    - computation_graph.py
    - transformed_code.py

    for multiple prefixes, they can share the same
    base cache dir of /path/to/hash_str/rank_i_j/ ,
    to store some common compilation artifacts.
    """

    self.disable_cache = disable_cache
    self.cache_dir = cache_dir
    self.cache_file_path = os.path.join(cache_dir, "vllm_compile_cache.py")

    if not disable_cache and os.path.exists(self.cache_file_path):
        # load the cache from the file
        with open(self.cache_file_path) as f:
            # we use ast.literal_eval to parse the data
            # because it is a safe way to parse Python literals.
            # do not use eval(), it is unsafe.
            cache = ast.literal_eval(f.read())

        def check_type(value: Any, ty: type) -> None:
            if not isinstance(value, ty):
                raise TypeError(f"Expected {ty} but got {type(value)} for {value}")

        def parse_key(key: Any) -> tuple[Range, int, str]:
            range_tuple, graph_index, compiler_name = key
            check_type(graph_index, int)
            check_type(compiler_name, str)
            if isinstance(range_tuple, tuple):
                start, end = range_tuple
                check_type(start, int)
                check_type(end, int)
                range_tuple = Range(start=start, end=end)
            check_type(range_tuple, Range)
            return range_tuple, graph_index, compiler_name

        self.cache = {parse_key(key): value for key, value in cache.items()}

    self.compiler.initialize_cache(
        cache_dir=cache_dir, disable_cache=disable_cache, prefix=prefix
    )

load

load(
    graph: GraphModule,
    example_inputs: list[Any],
    graph_index: int,
    compile_range: Range,
) -> Callable[..., Any] | None
Source code in vllm/compilation/backends.py
def load(
    self,
    graph: fx.GraphModule,
    example_inputs: list[Any],
    graph_index: int,
    compile_range: Range,
) -> Callable[..., Any] | None:
    if (compile_range, graph_index, self.compiler.name) not in self.cache:
        return None
    handle = self.cache[(compile_range, graph_index, self.compiler.name)]
    compiled_graph = self.compiler.load(
        handle, graph, example_inputs, graph_index, compile_range
    )
    logger.debug(
        "Directly load the %s-th graph for compile range %sfrom %s via handle %s",
        graph_index,
        str(compile_range),
        self.compiler.name,
        handle,
    )
    return compiled_graph

save_to_file

save_to_file() -> None
Source code in vllm/compilation/backends.py
def save_to_file(self) -> None:
    if self.disable_cache or not self.is_cache_updated:
        return
    printer = pprint.PrettyPrinter(indent=4)
    data = printer.pformat(self.cache)
    with open(self.cache_file_path, "w") as f:
        f.write(data)

PiecewiseCompileInterpreter

Bases: Interpreter

Code adapted from torch.fx.passes.shape_prop.ShapeProp. It runs the given graph with fake inputs, and compile some submodules specified by compile_submod_names with the given compilation configs.

NOTE: the order in compile_submod_names matters, because it will be used to determine the order of the compiled piecewise graphs. The first graph will handle logging, and the last graph has some special cudagraph output handling.

Note: This class shares similar logic with reconstruct_serializable_fn_from_mega_artifact in caching.py. Both create PiecewiseBackend instances and wrap them with cudagraph. The key difference is: - reconstruct_serializable_fn_from_mega_artifact: PiecewiseBackend receives pre-compiled runnables (compiled_runnables is set, graph is None) - this class: PiecewiseBackend receives the FX graph to compile (graph is set, compiled_runnables is None)

If modifying the backend creation/wrapping logic, consider updating both.

Source code in vllm/compilation/backends.py
class PiecewiseCompileInterpreter(torch.fx.Interpreter):  # type: ignore[misc]
    """Code adapted from `torch.fx.passes.shape_prop.ShapeProp`.
    It runs the given graph with fake inputs, and compile some
    submodules specified by `compile_submod_names` with the given
    compilation configs.

    NOTE: the order in `compile_submod_names` matters, because
    it will be used to determine the order of the compiled piecewise
    graphs. The first graph will handle logging, and the last graph
    has some special cudagraph output handling.

    Note: This class shares similar logic with
    reconstruct_serializable_fn_from_mega_artifact in caching.py.
    Both create PiecewiseBackend instances and wrap them with cudagraph.
    The key difference is:
    - reconstruct_serializable_fn_from_mega_artifact: PiecewiseBackend receives
      pre-compiled runnables (compiled_runnables is set, graph is None)
    - this class: PiecewiseBackend receives the FX graph to compile
      (graph is set, compiled_runnables is None)


    If modifying the backend creation/wrapping logic, consider updating both.
    """

    def __init__(
        self,
        module: torch.fx.GraphModule,
        compile_submod_names: list[str],
        vllm_config: VllmConfig,
        vllm_backend: "VllmBackend",
    ) -> None:
        super().__init__(module)
        from torch._guards import detect_fake_mode

        self.fake_mode = detect_fake_mode()
        self.compile_submod_names = compile_submod_names
        self.compilation_config = vllm_config.compilation_config
        self.vllm_config = vllm_config
        self.vllm_backend = vllm_backend
        # When True, it annoyingly dumps the torch.fx.Graph on errors.
        self.extra_traceback = False

    def run(self, *args: Any) -> Any:
        # maybe instead just assert inputs are fake?
        fake_args = [
            self.fake_mode.from_tensor(t) if isinstance(t, torch.Tensor) else t
            for t in args
        ]
        with self.fake_mode, enable_python_dispatcher():
            return super().run(*fake_args)

    def call_module(
        self,
        target: torch.fx.node.Target,
        args: tuple[torch.fx.node.Argument, ...],
        kwargs: dict[str, Any],
    ) -> Any:
        assert isinstance(target, str)

        output = super().call_module(target, args, kwargs)

        if target in self.compile_submod_names:
            index = self.compile_submod_names.index(target)
            submod = self.fetch_attr(target)

            sym_shape_indices = [
                i for i, x in enumerate(args) if isinstance(x, torch.SymInt)
            ]

            # Lazy import here to avoid circular import
            from torch._inductor.compile_fx import graph_returns_tuple

            from .piecewise_backend import PiecewiseBackend

            piecewise_backend = PiecewiseBackend(
                submod,
                self.vllm_config,
                index,
                len(self.compile_submod_names),
                sym_shape_indices,
                self.vllm_backend,
                graph_returns_tuple(submod),
            )

            self.module.__dict__[target] = wrap_with_cudagraph_if_needed(
                piecewise_backend,
                self.vllm_config,
                self.compilation_config,
                piecewise_backend.is_first_graph,
                piecewise_backend.is_last_graph,
            )

            compilation_counter.num_piecewise_capturable_graphs_seen += 1

        return output

compilation_config instance-attribute

compilation_config = compilation_config

compile_submod_names instance-attribute

compile_submod_names = compile_submod_names

extra_traceback instance-attribute

extra_traceback = False

fake_mode instance-attribute

fake_mode = detect_fake_mode()

vllm_backend instance-attribute

vllm_backend = vllm_backend

vllm_config instance-attribute

vllm_config = vllm_config

__init__

__init__(
    module: GraphModule,
    compile_submod_names: list[str],
    vllm_config: VllmConfig,
    vllm_backend: VllmBackend,
) -> None
Source code in vllm/compilation/backends.py
def __init__(
    self,
    module: torch.fx.GraphModule,
    compile_submod_names: list[str],
    vllm_config: VllmConfig,
    vllm_backend: "VllmBackend",
) -> None:
    super().__init__(module)
    from torch._guards import detect_fake_mode

    self.fake_mode = detect_fake_mode()
    self.compile_submod_names = compile_submod_names
    self.compilation_config = vllm_config.compilation_config
    self.vllm_config = vllm_config
    self.vllm_backend = vllm_backend
    # When True, it annoyingly dumps the torch.fx.Graph on errors.
    self.extra_traceback = False

call_module

call_module(
    target: Target,
    args: tuple[Argument, ...],
    kwargs: dict[str, Any],
) -> Any
Source code in vllm/compilation/backends.py
def call_module(
    self,
    target: torch.fx.node.Target,
    args: tuple[torch.fx.node.Argument, ...],
    kwargs: dict[str, Any],
) -> Any:
    assert isinstance(target, str)

    output = super().call_module(target, args, kwargs)

    if target in self.compile_submod_names:
        index = self.compile_submod_names.index(target)
        submod = self.fetch_attr(target)

        sym_shape_indices = [
            i for i, x in enumerate(args) if isinstance(x, torch.SymInt)
        ]

        # Lazy import here to avoid circular import
        from torch._inductor.compile_fx import graph_returns_tuple

        from .piecewise_backend import PiecewiseBackend

        piecewise_backend = PiecewiseBackend(
            submod,
            self.vllm_config,
            index,
            len(self.compile_submod_names),
            sym_shape_indices,
            self.vllm_backend,
            graph_returns_tuple(submod),
        )

        self.module.__dict__[target] = wrap_with_cudagraph_if_needed(
            piecewise_backend,
            self.vllm_config,
            self.compilation_config,
            piecewise_backend.is_first_graph,
            piecewise_backend.is_last_graph,
        )

        compilation_counter.num_piecewise_capturable_graphs_seen += 1

    return output

run

run(*args: Any) -> Any
Source code in vllm/compilation/backends.py
def run(self, *args: Any) -> Any:
    # maybe instead just assert inputs are fake?
    fake_args = [
        self.fake_mode.from_tensor(t) if isinstance(t, torch.Tensor) else t
        for t in args
    ]
    with self.fake_mode, enable_python_dispatcher():
        return super().run(*fake_args)

SplitItem dataclass

Source code in vllm/compilation/backends.py
@dataclasses.dataclass
class SplitItem:
    submod_name: str
    graph_id: int
    is_splitting_graph: bool
    graph: fx.GraphModule

graph instance-attribute

graph: GraphModule

graph_id instance-attribute

graph_id: int

is_splitting_graph instance-attribute

is_splitting_graph: bool

submod_name instance-attribute

submod_name: str

__init__

__init__(
    submod_name: str,
    graph_id: int,
    is_splitting_graph: bool,
    graph: GraphModule,
) -> None

VllmBackend

The compilation backend for torch.compile with vLLM. It is used for compilation mode of CompilationMode.VLLM_COMPILE, where we customize the compilation.

The major work of this backend is to split the graph into piecewise graphs, and pass them to the piecewise backend.

This backend also adds the PostGradPassManager to Inductor config, which handles the post-grad passes.

Source code in vllm/compilation/backends.py
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
class VllmBackend:
    """The compilation backend for `torch.compile` with vLLM.
    It is used for compilation mode of `CompilationMode.VLLM_COMPILE`,
    where we customize the compilation.

    The major work of this backend is to split the graph into
    piecewise graphs, and pass them to the piecewise backend.

    This backend also adds the PostGradPassManager to Inductor config,
    which handles the post-grad passes.
    """

    vllm_config: VllmConfig
    compilation_config: CompilationConfig
    _called: bool = False
    # the graph we compiled
    graph: fx.GraphModule
    # the stiching graph module for all the piecewise graphs
    split_gm: fx.GraphModule
    piecewise_graphs: list[SplitItem]
    returned_callable: Callable[..., Any]
    # Inductor passes to run on the graph pre-defunctionalization
    post_grad_passes: Sequence[Callable[..., Any]]
    compiler_manager: CompilerManager
    # Copy of CompilationConfig.inductor_compile_config +
    # an entry for PostGradPassManager
    inductor_config: dict[str, Any]

    def __init__(
        self,
        vllm_config: VllmConfig,
        prefix: str = "",
        is_encoder: bool = False,
    ) -> None:
        # if the model is initialized with a non-empty prefix,
        # then usually it's enough to use that prefix,
        # e.g. language_model, vision_model, etc.
        # when multiple parts are initialized as independent
        # models, we need to use the model_tag to distinguish
        # them, e.g. backbone (default), eagle_head, etc.
        self.prefix = prefix or model_tag

        # Mark compilation for encoder.
        self.is_encoder = is_encoder or model_is_encoder

        # Passes to run on the graph post-grad.
        self.pass_manager = resolve_obj_by_qualname(
            current_platform.get_pass_manager_cls()
        )()
        self.pass_key = current_platform.pass_key

        self.vllm_config = vllm_config
        self.compilation_config = vllm_config.compilation_config

        self.compiler_manager: CompilerManager = CompilerManager(
            self.compilation_config
        )

        # Deepcopy the inductor config to detach the post-grad custom pass
        # from CompilationConfig.
        # We want to avoid PostGradPassManager in CompilationConfig because
        # in future we need PostGradPassManager.uuid() to be executed
        # only at compile time.
        self.inductor_config = deepcopy(self.compilation_config.inductor_compile_config)
        # `torch.compile` is JIT compiled, so we don't need to
        # do anything here

    def collect_standalone_compile_artifacts(
        self,
    ) -> tuple[Any, dict[str, list[int]] | None, dict[str, bool] | None]:
        """Collect inductor cache artifacts from all piecewise backends.

        Returns:
            tuple: (standalone_compile_artifacts, sym_shape_indices_map,
                    returns_tuple_map)
                - standalone_compile_artifacts: StandaloneCompiledArtifacts
                  with compiled artifacts
                - sym_shape_indices_map: dict mapping submod_name to
                  sym_shape_indices
                - returns_tuple_map: dict mapping submod_name to
                  returns_tuple
        """

        if not envs.VLLM_USE_MEGA_AOT_ARTIFACT:
            return None, None, None

        from .caching import StandaloneCompiledArtifacts
        from .piecewise_backend import PiecewiseBackend

        standalone_compile_artifacts = StandaloneCompiledArtifacts()
        sym_shape_indices_map = {}
        returns_tuple_map = {}

        for name, _ in self.split_gm.named_children():
            # get the actual attribute (shadowed by PiecewiseBackend in __dict__)
            child = getattr(self.split_gm, name)
            # unwrap the static graph wrapper class if applicable
            piecewise_backend = child.runnable if hasattr(child, "runnable") else child

            if not isinstance(piecewise_backend, PiecewiseBackend):
                continue

            submod_name = name
            sym_shape_indices_map[submod_name] = piecewise_backend.sym_shape_indices
            returns_tuple_map[submod_name] = piecewise_backend.returns_tuple

            for shape_str, bytes_data in piecewise_backend.to_bytes().items():
                standalone_compile_artifacts.insert(submod_name, shape_str, bytes_data)
                logger.debug(
                    "collected artifact for %s shape %s (%d bytes)",
                    submod_name,
                    shape_str,
                    len(bytes_data),
                )

        logger.info(
            "collected artifacts: %d entries, %d artifacts, %d bytes total",
            standalone_compile_artifacts.num_entries(),
            standalone_compile_artifacts.num_artifacts(),
            standalone_compile_artifacts.size_bytes(),
        )

        logger.debug(
            "standalone compile artifact keys: %s",
            list(standalone_compile_artifacts.submodule_bytes.keys()),
        )

        return standalone_compile_artifacts, sym_shape_indices_map, returns_tuple_map

    def configure_post_pass(self) -> None:
        self.pass_manager.configure(self.vllm_config)

        # Post-grad custom passes are run using the post_grad_custom_post_pass
        # hook. If a pass for that hook exists, add it to the pass manager.
        if self.pass_key in self.inductor_config:
            if isinstance(self.inductor_config[self.pass_key], PostGradPassManager):
                raise ValueError(
                    "PostGradPassManager can not be kept in CompilationConfig."
                )
            else:
                # Config should automatically wrap all inductor passes
                assert isinstance(
                    self.compilation_config.inductor_compile_config[self.pass_key],
                    InductorPass,
                )
                self.pass_manager.add(
                    self.compilation_config.inductor_compile_config[self.pass_key]
                )
        self.inductor_config[self.pass_key] = self.pass_manager

    def __call__(self, graph: fx.GraphModule, example_inputs: Sequence[Any]) -> Any:
        from .caching import (
            VllmSerializableFunction,
        )

        vllm_config = self.vllm_config
        # Minimal hashing here with existing utilities, reused below.

        env_factors = envs.compile_factors()
        env_hash = hash_factors(env_factors)
        # Compute config/compiler/code hashes once and reuse
        config_hash = vllm_config.compute_hash()
        compiler_hash = self.compiler_manager.compute_hash(vllm_config)
        forward_code_files = list(sorted(self.compilation_config.traced_files))

        logger.debug(
            "Traced files (to be considered for compilation cache):\n%s",
            lazy(lambda: "\n".join(forward_code_files)),
        )
        hash_content = []
        for filepath in forward_code_files:
            hash_content.append(filepath)
            if filepath == "<string>":
                # This means the function was dynamically generated, with
                # e.g. exec(). We can't actually check these.
                continue
            try:
                with open(filepath) as f:
                    hash_content.append(f.read())
            except (OSError, UnicodeDecodeError):
                logger.warning("Failed to read file %s", filepath)
                continue
        code_hash = hashlib.sha256("\n".join(hash_content).encode()).hexdigest()
        # Clear after consumption
        self.compilation_config.traced_files.clear()
        if not self.compilation_config.cache_dir:
            # no provided cache dir, generate one based on the known factors
            # that affects the compilation. if none of the factors change,
            # the cache dir will be the same so that we can reuse the compiled
            # graph.
            factors = [env_hash, config_hash, code_hash, compiler_hash]
            # Use SHA-256 for cache key hashing to be consistent across
            # compute_hash functions. Truncate for a short cache dir name.
            hash_key = hashlib.sha256(str(factors).encode()).hexdigest()[:10]
            cache_dir = os.path.join(
                envs.VLLM_CACHE_ROOT, "torch_compile_cache", hash_key
            )
            self.compilation_config.cache_dir = cache_dir

        cache_dir = self.compilation_config.cache_dir
        os.makedirs(cache_dir, exist_ok=True)
        self.compilation_config.cache_dir = cache_dir
        rank = vllm_config.parallel_config.rank
        dp_rank = vllm_config.parallel_config.data_parallel_index
        local_cache_dir = os.path.join(cache_dir, f"rank_{rank}_{dp_rank}", self.prefix)
        os.makedirs(local_cache_dir, exist_ok=True)
        self.compilation_config.local_cache_dir = local_cache_dir

        # Honors opt-outs such as CompilationMode.NONE or VLLM_DISABLE_COMPILE_CACHE.
        disable_cache = not is_compile_cache_enabled(self.inductor_config)

        if disable_cache:
            logger.info_once("vLLM's torch.compile cache is disabled.", scope="local")
        else:
            logger.info_once(
                "Using cache directory: %s for vLLM's torch.compile",
                local_cache_dir,
                scope="local",
            )

        self.compiler_manager.initialize_cache(
            local_cache_dir, disable_cache, self.prefix
        )

        # Reuses existing cache key

        logger.debug(
            "torch.compile cache factors: env=%s cfg=%s comp=%s code=%s dir=%s",
            env_hash,
            config_hash,
            compiler_hash,
            code_hash,
            local_cache_dir,
        )

        # Persist and log only hash-relevant factors together.
        try:
            logger.debug(
                "Compile env factors (raw):\n%s\nVllm config hash: %s",
                lazy(partial(pprint.pformat, env_factors, width=120)),
                config_hash,
            )
            meta_path = os.path.join(local_cache_dir, "cache_key_factors.json")
            if not os.path.exists(meta_path):
                with open(meta_path, "w") as f:
                    json.dump(
                        {
                            "env": env_factors,  # raw factors used for env_hash
                            "config_hash": config_hash,
                            "code_hash": code_hash,
                            "compiler_hash": compiler_hash,
                        },
                        f,
                        indent=2,
                        sort_keys=True,
                    )
        except Exception:
            # Best-effort only; metadata write failures are non-fatal.
            logger.warning(
                (
                    "Could not write compile cache metadata at %s; continuing without "
                    "metadata. Compiled cache remains valid; diagnostics may be "
                    "limited."
                ),
                local_cache_dir,
                exc_info=True,
            )

        # when dynamo calls the backend, it means the bytecode
        # transform and analysis are done
        compilation_counter.num_graphs_seen += 1
        from .monitor import torch_compile_start_time

        dynamo_time = time.time() - torch_compile_start_time
        logger.info_once(
            "Dynamo bytecode transform time: %.2f s", dynamo_time, scope="local"
        )
        self.compilation_config.compilation_time += dynamo_time

        # we control the compilation process, each instance can only be
        # called once
        assert not self._called, "VllmBackend can only be called once"

        self.graph = graph
        self.configure_post_pass()

        if self.compilation_config.use_inductor_graph_partition:
            # Let Inductor decide partitioning; avoid FX-level pre-splitting.
            fx_split_ops: list[str] = []
        else:
            fx_split_ops = self.compilation_config.splitting_ops or []

        self.split_gm, self.piecewise_graphs = split_graph(graph, fx_split_ops)

        # keep a split_gm copy from BEFORE the interpreter replaces
        # submodules with PiecewiseBackend -- used for serialization
        original_split_gm = None
        if envs.VLLM_USE_MEGA_AOT_ARTIFACT:
            original_split_gm = deepcopy(self.split_gm)

        from torch._dynamo.utils import lazy_format_graph_code

        # depyf will hook lazy_format_graph_code and dump the graph
        # for debugging, no need to print the graph here
        lazy_format_graph_code("before split", self.graph)
        lazy_format_graph_code("after split", self.split_gm)

        compilation_counter.num_piecewise_graphs_seen += len(self.piecewise_graphs)
        submod_names_to_compile = [
            item.submod_name
            for item in self.piecewise_graphs
            if not item.is_splitting_graph
        ]

        # Extract fake values from the graph to use them when needed.
        all_fake_values = []
        for i in graph.graph.find_nodes(op="placeholder"):
            all_fake_values.append(i.meta["example_value"])

        fake_args = [
            all_fake_values[i] if isinstance(t, torch.Tensor) else t
            for i, t in enumerate(example_inputs)
        ]

        # propagate the split graph to the piecewise backend,
        # compile submodules with symbolic shapes
        PiecewiseCompileInterpreter(
            self.split_gm, submod_names_to_compile, self.vllm_config, self
        ).run(*fake_args)

        from torch._guards import detect_fake_mode

        fake_mode = detect_fake_mode()

        if (
            self.compilation_config.dynamic_shapes_config.evaluate_guards
            and self.compilation_config.dynamic_shapes_config.type
            == DynamicShapesType.BACKED
        ):
            from torch.utils._sympy.value_ranges import ValueRanges

            # Drop counter-0/1 specializations guards; for backed dynamic shapes,
            # torch.compile will specialize for 0/1 inputs or otherwise guards that
            # shape is >= 2. This is because it's really hard not to hit a check
            # against 0/1. When we evaluate shape guards, we exclude checking those
            # guards (We would fail always otherwise).

            # We avoid that by updating the ranges of backed sizes when the min is
            # 2 for any, we assume it's 0.
            for s, r in fake_mode.shape_env.var_to_range.items():
                if r.lower == 2:
                    fake_mode.shape_env.var_to_range[s] = ValueRanges(0, r.upper)

        graph_path = os.path.join(local_cache_dir, "computation_graph.py")
        if not os.path.exists(graph_path):
            # code adapted from
            # https://github.com/thuml/depyf/blob/dab831108a752d1facc00acdd6d4243891845c37/depyf/explain/patched_lazy_format_graph_code.py#L30
            # use `print_readable` because it can include submodules
            src = (
                "from __future__ import annotations\nimport torch\n"
                + self.split_gm.print_readable(print_output=False)
            )
            src = src.replace("<lambda>", "GraphModule")
            with open(graph_path, "w") as f:
                f.write(src)

            logger.debug_once(
                "Computation graph saved to %s", graph_path, scope="local"
            )

        self._called = True
        graph_to_serialize = (
            original_split_gm if envs.VLLM_USE_MEGA_AOT_ARTIFACT else self.graph
        )

        if (
            self.compilation_config.cudagraph_mode == CUDAGraphMode.NONE
            or not self.compilation_config.cudagraph_copy_inputs
        ):
            return VllmSerializableFunction(
                graph_to_serialize,
                example_inputs,
                self.prefix,
                self.split_gm,
                is_encoder=self.is_encoder,
                vllm_backend=self,
            )

        # index of tensors that have symbolic shapes (batch size)
        # for weights and static buffers, they will have concrete shapes.
        # symbolic shape only happens for input tensors.
        from torch.fx.experimental.symbolic_shapes import is_symbolic

        sym_tensor_indices = [
            i
            for i, x in enumerate(fake_args)
            if isinstance(x, torch._subclasses.fake_tensor.FakeTensor)
            and any(is_symbolic(d) for d in x.size())
        ]

        # compiler managed cudagraph input buffers
        # we assume the first run with symbolic shapes
        # has the maximum size among all the tensors
        copy_and_call = make_copy_and_call(
            sym_tensor_indices,
            [example_inputs[x].clone() for x in sym_tensor_indices],
            self.split_gm,
        )

        return VllmSerializableFunction(
            graph_to_serialize,
            example_inputs,
            self.prefix,
            copy_and_call,
            is_encoder=self.is_encoder,
            vllm_backend=self,
            sym_tensor_indices=sym_tensor_indices,
        )

_called class-attribute instance-attribute

_called: bool = False

compilation_config instance-attribute

compilation_config: CompilationConfig = compilation_config

compiler_manager instance-attribute

compiler_manager: CompilerManager = CompilerManager(
    compilation_config
)

graph instance-attribute

graph: GraphModule

inductor_config instance-attribute

inductor_config: dict[str, Any] = deepcopy(
    inductor_compile_config
)

is_encoder instance-attribute

is_encoder = is_encoder or model_is_encoder

pass_key instance-attribute

pass_key = pass_key

pass_manager instance-attribute

pass_manager = resolve_obj_by_qualname(
    get_pass_manager_cls()
)()

piecewise_graphs instance-attribute

piecewise_graphs: list[SplitItem]

post_grad_passes instance-attribute

post_grad_passes: Sequence[Callable[..., Any]]

prefix instance-attribute

prefix = prefix or model_tag

returned_callable instance-attribute

returned_callable: Callable[..., Any]

split_gm instance-attribute

split_gm: GraphModule

vllm_config instance-attribute

vllm_config: VllmConfig = vllm_config

__call__

__call__(
    graph: GraphModule, example_inputs: Sequence[Any]
) -> Any
Source code in vllm/compilation/backends.py
def __call__(self, graph: fx.GraphModule, example_inputs: Sequence[Any]) -> Any:
    from .caching import (
        VllmSerializableFunction,
    )

    vllm_config = self.vllm_config
    # Minimal hashing here with existing utilities, reused below.

    env_factors = envs.compile_factors()
    env_hash = hash_factors(env_factors)
    # Compute config/compiler/code hashes once and reuse
    config_hash = vllm_config.compute_hash()
    compiler_hash = self.compiler_manager.compute_hash(vllm_config)
    forward_code_files = list(sorted(self.compilation_config.traced_files))

    logger.debug(
        "Traced files (to be considered for compilation cache):\n%s",
        lazy(lambda: "\n".join(forward_code_files)),
    )
    hash_content = []
    for filepath in forward_code_files:
        hash_content.append(filepath)
        if filepath == "<string>":
            # This means the function was dynamically generated, with
            # e.g. exec(). We can't actually check these.
            continue
        try:
            with open(filepath) as f:
                hash_content.append(f.read())
        except (OSError, UnicodeDecodeError):
            logger.warning("Failed to read file %s", filepath)
            continue
    code_hash = hashlib.sha256("\n".join(hash_content).encode()).hexdigest()
    # Clear after consumption
    self.compilation_config.traced_files.clear()
    if not self.compilation_config.cache_dir:
        # no provided cache dir, generate one based on the known factors
        # that affects the compilation. if none of the factors change,
        # the cache dir will be the same so that we can reuse the compiled
        # graph.
        factors = [env_hash, config_hash, code_hash, compiler_hash]
        # Use SHA-256 for cache key hashing to be consistent across
        # compute_hash functions. Truncate for a short cache dir name.
        hash_key = hashlib.sha256(str(factors).encode()).hexdigest()[:10]
        cache_dir = os.path.join(
            envs.VLLM_CACHE_ROOT, "torch_compile_cache", hash_key
        )
        self.compilation_config.cache_dir = cache_dir

    cache_dir = self.compilation_config.cache_dir
    os.makedirs(cache_dir, exist_ok=True)
    self.compilation_config.cache_dir = cache_dir
    rank = vllm_config.parallel_config.rank
    dp_rank = vllm_config.parallel_config.data_parallel_index
    local_cache_dir = os.path.join(cache_dir, f"rank_{rank}_{dp_rank}", self.prefix)
    os.makedirs(local_cache_dir, exist_ok=True)
    self.compilation_config.local_cache_dir = local_cache_dir

    # Honors opt-outs such as CompilationMode.NONE or VLLM_DISABLE_COMPILE_CACHE.
    disable_cache = not is_compile_cache_enabled(self.inductor_config)

    if disable_cache:
        logger.info_once("vLLM's torch.compile cache is disabled.", scope="local")
    else:
        logger.info_once(
            "Using cache directory: %s for vLLM's torch.compile",
            local_cache_dir,
            scope="local",
        )

    self.compiler_manager.initialize_cache(
        local_cache_dir, disable_cache, self.prefix
    )

    # Reuses existing cache key

    logger.debug(
        "torch.compile cache factors: env=%s cfg=%s comp=%s code=%s dir=%s",
        env_hash,
        config_hash,
        compiler_hash,
        code_hash,
        local_cache_dir,
    )

    # Persist and log only hash-relevant factors together.
    try:
        logger.debug(
            "Compile env factors (raw):\n%s\nVllm config hash: %s",
            lazy(partial(pprint.pformat, env_factors, width=120)),
            config_hash,
        )
        meta_path = os.path.join(local_cache_dir, "cache_key_factors.json")
        if not os.path.exists(meta_path):
            with open(meta_path, "w") as f:
                json.dump(
                    {
                        "env": env_factors,  # raw factors used for env_hash
                        "config_hash": config_hash,
                        "code_hash": code_hash,
                        "compiler_hash": compiler_hash,
                    },
                    f,
                    indent=2,
                    sort_keys=True,
                )
    except Exception:
        # Best-effort only; metadata write failures are non-fatal.
        logger.warning(
            (
                "Could not write compile cache metadata at %s; continuing without "
                "metadata. Compiled cache remains valid; diagnostics may be "
                "limited."
            ),
            local_cache_dir,
            exc_info=True,
        )

    # when dynamo calls the backend, it means the bytecode
    # transform and analysis are done
    compilation_counter.num_graphs_seen += 1
    from .monitor import torch_compile_start_time

    dynamo_time = time.time() - torch_compile_start_time
    logger.info_once(
        "Dynamo bytecode transform time: %.2f s", dynamo_time, scope="local"
    )
    self.compilation_config.compilation_time += dynamo_time

    # we control the compilation process, each instance can only be
    # called once
    assert not self._called, "VllmBackend can only be called once"

    self.graph = graph
    self.configure_post_pass()

    if self.compilation_config.use_inductor_graph_partition:
        # Let Inductor decide partitioning; avoid FX-level pre-splitting.
        fx_split_ops: list[str] = []
    else:
        fx_split_ops = self.compilation_config.splitting_ops or []

    self.split_gm, self.piecewise_graphs = split_graph(graph, fx_split_ops)

    # keep a split_gm copy from BEFORE the interpreter replaces
    # submodules with PiecewiseBackend -- used for serialization
    original_split_gm = None
    if envs.VLLM_USE_MEGA_AOT_ARTIFACT:
        original_split_gm = deepcopy(self.split_gm)

    from torch._dynamo.utils import lazy_format_graph_code

    # depyf will hook lazy_format_graph_code and dump the graph
    # for debugging, no need to print the graph here
    lazy_format_graph_code("before split", self.graph)
    lazy_format_graph_code("after split", self.split_gm)

    compilation_counter.num_piecewise_graphs_seen += len(self.piecewise_graphs)
    submod_names_to_compile = [
        item.submod_name
        for item in self.piecewise_graphs
        if not item.is_splitting_graph
    ]

    # Extract fake values from the graph to use them when needed.
    all_fake_values = []
    for i in graph.graph.find_nodes(op="placeholder"):
        all_fake_values.append(i.meta["example_value"])

    fake_args = [
        all_fake_values[i] if isinstance(t, torch.Tensor) else t
        for i, t in enumerate(example_inputs)
    ]

    # propagate the split graph to the piecewise backend,
    # compile submodules with symbolic shapes
    PiecewiseCompileInterpreter(
        self.split_gm, submod_names_to_compile, self.vllm_config, self
    ).run(*fake_args)

    from torch._guards import detect_fake_mode

    fake_mode = detect_fake_mode()

    if (
        self.compilation_config.dynamic_shapes_config.evaluate_guards
        and self.compilation_config.dynamic_shapes_config.type
        == DynamicShapesType.BACKED
    ):
        from torch.utils._sympy.value_ranges import ValueRanges

        # Drop counter-0/1 specializations guards; for backed dynamic shapes,
        # torch.compile will specialize for 0/1 inputs or otherwise guards that
        # shape is >= 2. This is because it's really hard not to hit a check
        # against 0/1. When we evaluate shape guards, we exclude checking those
        # guards (We would fail always otherwise).

        # We avoid that by updating the ranges of backed sizes when the min is
        # 2 for any, we assume it's 0.
        for s, r in fake_mode.shape_env.var_to_range.items():
            if r.lower == 2:
                fake_mode.shape_env.var_to_range[s] = ValueRanges(0, r.upper)

    graph_path = os.path.join(local_cache_dir, "computation_graph.py")
    if not os.path.exists(graph_path):
        # code adapted from
        # https://github.com/thuml/depyf/blob/dab831108a752d1facc00acdd6d4243891845c37/depyf/explain/patched_lazy_format_graph_code.py#L30
        # use `print_readable` because it can include submodules
        src = (
            "from __future__ import annotations\nimport torch\n"
            + self.split_gm.print_readable(print_output=False)
        )
        src = src.replace("<lambda>", "GraphModule")
        with open(graph_path, "w") as f:
            f.write(src)

        logger.debug_once(
            "Computation graph saved to %s", graph_path, scope="local"
        )

    self._called = True
    graph_to_serialize = (
        original_split_gm if envs.VLLM_USE_MEGA_AOT_ARTIFACT else self.graph
    )

    if (
        self.compilation_config.cudagraph_mode == CUDAGraphMode.NONE
        or not self.compilation_config.cudagraph_copy_inputs
    ):
        return VllmSerializableFunction(
            graph_to_serialize,
            example_inputs,
            self.prefix,
            self.split_gm,
            is_encoder=self.is_encoder,
            vllm_backend=self,
        )

    # index of tensors that have symbolic shapes (batch size)
    # for weights and static buffers, they will have concrete shapes.
    # symbolic shape only happens for input tensors.
    from torch.fx.experimental.symbolic_shapes import is_symbolic

    sym_tensor_indices = [
        i
        for i, x in enumerate(fake_args)
        if isinstance(x, torch._subclasses.fake_tensor.FakeTensor)
        and any(is_symbolic(d) for d in x.size())
    ]

    # compiler managed cudagraph input buffers
    # we assume the first run with symbolic shapes
    # has the maximum size among all the tensors
    copy_and_call = make_copy_and_call(
        sym_tensor_indices,
        [example_inputs[x].clone() for x in sym_tensor_indices],
        self.split_gm,
    )

    return VllmSerializableFunction(
        graph_to_serialize,
        example_inputs,
        self.prefix,
        copy_and_call,
        is_encoder=self.is_encoder,
        vllm_backend=self,
        sym_tensor_indices=sym_tensor_indices,
    )

__init__

__init__(
    vllm_config: VllmConfig,
    prefix: str = "",
    is_encoder: bool = False,
) -> None
Source code in vllm/compilation/backends.py
def __init__(
    self,
    vllm_config: VllmConfig,
    prefix: str = "",
    is_encoder: bool = False,
) -> None:
    # if the model is initialized with a non-empty prefix,
    # then usually it's enough to use that prefix,
    # e.g. language_model, vision_model, etc.
    # when multiple parts are initialized as independent
    # models, we need to use the model_tag to distinguish
    # them, e.g. backbone (default), eagle_head, etc.
    self.prefix = prefix or model_tag

    # Mark compilation for encoder.
    self.is_encoder = is_encoder or model_is_encoder

    # Passes to run on the graph post-grad.
    self.pass_manager = resolve_obj_by_qualname(
        current_platform.get_pass_manager_cls()
    )()
    self.pass_key = current_platform.pass_key

    self.vllm_config = vllm_config
    self.compilation_config = vllm_config.compilation_config

    self.compiler_manager: CompilerManager = CompilerManager(
        self.compilation_config
    )

    # Deepcopy the inductor config to detach the post-grad custom pass
    # from CompilationConfig.
    # We want to avoid PostGradPassManager in CompilationConfig because
    # in future we need PostGradPassManager.uuid() to be executed
    # only at compile time.
    self.inductor_config = deepcopy(self.compilation_config.inductor_compile_config)

collect_standalone_compile_artifacts

collect_standalone_compile_artifacts() -> tuple[
    Any, dict[str, list[int]] | None, dict[str, bool] | None
]

Collect inductor cache artifacts from all piecewise backends.

Returns:

Name Type Description
tuple tuple[Any, dict[str, list[int]] | None, dict[str, bool] | None]

(standalone_compile_artifacts, sym_shape_indices_map, returns_tuple_map) - standalone_compile_artifacts: StandaloneCompiledArtifacts with compiled artifacts - sym_shape_indices_map: dict mapping submod_name to sym_shape_indices - returns_tuple_map: dict mapping submod_name to returns_tuple

Source code in vllm/compilation/backends.py
def collect_standalone_compile_artifacts(
    self,
) -> tuple[Any, dict[str, list[int]] | None, dict[str, bool] | None]:
    """Collect inductor cache artifacts from all piecewise backends.

    Returns:
        tuple: (standalone_compile_artifacts, sym_shape_indices_map,
                returns_tuple_map)
            - standalone_compile_artifacts: StandaloneCompiledArtifacts
              with compiled artifacts
            - sym_shape_indices_map: dict mapping submod_name to
              sym_shape_indices
            - returns_tuple_map: dict mapping submod_name to
              returns_tuple
    """

    if not envs.VLLM_USE_MEGA_AOT_ARTIFACT:
        return None, None, None

    from .caching import StandaloneCompiledArtifacts
    from .piecewise_backend import PiecewiseBackend

    standalone_compile_artifacts = StandaloneCompiledArtifacts()
    sym_shape_indices_map = {}
    returns_tuple_map = {}

    for name, _ in self.split_gm.named_children():
        # get the actual attribute (shadowed by PiecewiseBackend in __dict__)
        child = getattr(self.split_gm, name)
        # unwrap the static graph wrapper class if applicable
        piecewise_backend = child.runnable if hasattr(child, "runnable") else child

        if not isinstance(piecewise_backend, PiecewiseBackend):
            continue

        submod_name = name
        sym_shape_indices_map[submod_name] = piecewise_backend.sym_shape_indices
        returns_tuple_map[submod_name] = piecewise_backend.returns_tuple

        for shape_str, bytes_data in piecewise_backend.to_bytes().items():
            standalone_compile_artifacts.insert(submod_name, shape_str, bytes_data)
            logger.debug(
                "collected artifact for %s shape %s (%d bytes)",
                submod_name,
                shape_str,
                len(bytes_data),
            )

    logger.info(
        "collected artifacts: %d entries, %d artifacts, %d bytes total",
        standalone_compile_artifacts.num_entries(),
        standalone_compile_artifacts.num_artifacts(),
        standalone_compile_artifacts.size_bytes(),
    )

    logger.debug(
        "standalone compile artifact keys: %s",
        list(standalone_compile_artifacts.submodule_bytes.keys()),
    )

    return standalone_compile_artifacts, sym_shape_indices_map, returns_tuple_map

configure_post_pass

configure_post_pass() -> None
Source code in vllm/compilation/backends.py
def configure_post_pass(self) -> None:
    self.pass_manager.configure(self.vllm_config)

    # Post-grad custom passes are run using the post_grad_custom_post_pass
    # hook. If a pass for that hook exists, add it to the pass manager.
    if self.pass_key in self.inductor_config:
        if isinstance(self.inductor_config[self.pass_key], PostGradPassManager):
            raise ValueError(
                "PostGradPassManager can not be kept in CompilationConfig."
            )
        else:
            # Config should automatically wrap all inductor passes
            assert isinstance(
                self.compilation_config.inductor_compile_config[self.pass_key],
                InductorPass,
            )
            self.pass_manager.add(
                self.compilation_config.inductor_compile_config[self.pass_key]
            )
    self.inductor_config[self.pass_key] = self.pass_manager

make_compiler

make_compiler(
    compilation_config: CompilationConfig,
) -> CompilerInterface
Source code in vllm/compilation/backends.py
def make_compiler(compilation_config: CompilationConfig) -> CompilerInterface:
    assert not envs.VLLM_USE_MEGA_AOT_ARTIFACT or envs.VLLM_USE_STANDALONE_COMPILE, (
        "VLLM_USE_MEGA_AOT_ARTIFACT=1 requires VLLM_USE_STANDALONE_COMPILE=1"
    )

    if compilation_config.backend == "inductor":
        # Use standalone compile only if requested, version is new enough,
        # and the symbol actually exists in this PyTorch build.
        if (
            envs.VLLM_USE_STANDALONE_COMPILE
            and is_torch_equal_or_newer("2.8.0.dev")
            and hasattr(torch._inductor, "standalone_compile")
        ):
            logger.debug("Using InductorStandaloneAdaptor")
            return InductorStandaloneAdaptor(
                compilation_config.compile_cache_save_format
            )
        else:
            logger.debug("Using InductorAdaptor")
            return InductorAdaptor()
    elif compilation_config.backend == "eager":
        logger.debug("Using EagerAdaptor")
        return EagerAdaptor()
    else:
        logger.debug("Using custom backend: %s", compilation_config.backend)
        compiler = resolve_obj_by_qualname(current_platform.get_compile_backend())()
        assert isinstance(compiler, CompilerInterface)
        return compiler

make_copy_and_call

make_copy_and_call(
    sym_tensor_indices: list[int],
    input_buffers: list[Tensor | None],
    callable_fn: Callable[..., Any],
) -> Callable[..., Any]

Create a wrapper that copies inputs to static buffers before calling.

This is used for cudagraph input copying where we need to copy dynamic tensors to static buffers before invoking the compiled graph.

Parameters:

Name Type Description Default
sym_tensor_indices list[int]

Indices of tensors with symbolic shapes

required
input_buffers list[Tensor | None]

List of static buffers (can contain None for lazy init)

required
callable_fn Callable[..., Any]

The compiled function to call

required

Returns:

Type Description
Callable[..., Any]

A wrapper function that copies inputs and calls the compiled function

Source code in vllm/compilation/backends.py
def make_copy_and_call(
    sym_tensor_indices: list[int],
    input_buffers: list[torch.Tensor | None],
    callable_fn: Callable[..., Any],
) -> Callable[..., Any]:
    """Create a wrapper that copies inputs to static buffers before calling.

    This is used for cudagraph input copying where we need to copy dynamic
    tensors to static buffers before invoking the compiled graph.

    Args:
        sym_tensor_indices: Indices of tensors with symbolic shapes
        input_buffers: List of static buffers (can contain None for lazy init)
        callable_fn: The compiled function to call

    Returns:
        A wrapper function that copies inputs and calls the compiled function
    """

    def copy_and_call(*args: Any) -> Any:
        list_args = list(args)
        for i, index in enumerate(sym_tensor_indices):
            runtime_tensor = list_args[index]
            runtime_shape = runtime_tensor.shape[0]

            # lazy initialization of buffer on first call
            if input_buffers[i] is None:
                input_buffers[i] = runtime_tensor.clone()

            static_tensor = input_buffers[i][:runtime_shape]  # type: ignore[index]
            static_tensor.copy_(runtime_tensor)
            list_args[index] = static_tensor
        return callable_fn(*list_args)

    return copy_and_call

set_model_tag

set_model_tag(
    tag: str, is_encoder: bool = False
) -> Generator[None, None, None]

Context manager to set the model tag.

Source code in vllm/compilation/backends.py
@contextmanager
def set_model_tag(tag: str, is_encoder: bool = False) -> Generator[None, None, None]:
    """Context manager to set the model tag."""
    global model_tag
    global model_is_encoder
    assert tag != model_tag, (
        f"Model tag {tag} is the same as the current tag {model_tag}."
    )
    old_tag = model_tag
    old_is_encoder = model_is_encoder

    model_tag = tag
    model_is_encoder = is_encoder
    try:
        yield
    finally:
        model_tag = old_tag
        model_is_encoder = old_is_encoder

set_on_compilation_complete

set_on_compilation_complete(
    callback: Callable[[], None],
) -> Generator[None, None, None]
Source code in vllm/compilation/backends.py
@contextmanager
def set_on_compilation_complete(
    callback: Callable[[], None],
) -> Generator[None, None, None]:
    token = _on_compilation_complete_callback.set(callback)
    try:
        yield
    finally:
        _on_compilation_complete_callback.reset(token)

split_graph

split_graph(
    graph: GraphModule, splitting_ops: list[str]
) -> tuple[GraphModule, list[SplitItem]]
Source code in vllm/compilation/backends.py
def split_graph(
    graph: fx.GraphModule, splitting_ops: list[str]
) -> tuple[fx.GraphModule, list[SplitItem]]:
    # split graph by ops
    subgraph_id = 0
    node_to_subgraph_id: dict[fx.Node, int] = {}
    split_op_graphs: list[int] = []
    for node in graph.graph.nodes:
        if node.op in ("output", "placeholder"):
            continue

        # Check if this is a getitem operation on a node from an earlier subgraph.
        # If so, assign it to the same subgraph as its input to avoid passing entire
        # tuple as input to submodules, which is against standalone_compile and
        # AoTAutograd input requirement.
        if node.op == "call_function" and node.target == operator.getitem:
            # Assign this getitem to the same subgraph as its input
            input_node = node.args[0]
            if input_node.op != "placeholder":
                assert input_node in node_to_subgraph_id
                node_to_subgraph_id[node] = node_to_subgraph_id[input_node]
                continue

        if should_split(node, splitting_ops):
            subgraph_id += 1
            node_to_subgraph_id[node] = subgraph_id
            split_op_graphs.append(subgraph_id)
            subgraph_id += 1
        else:
            node_to_subgraph_id[node] = subgraph_id

    # `keep_original_order` is important!
    # otherwise pytorch might reorder the nodes and
    # the semantics of the graph will change when we
    # have mutations in the graph
    split_gm = torch.fx.passes.split_module.split_module(
        graph, None, lambda node: node_to_subgraph_id[node], keep_original_order=True
    )

    outputs = []

    names = [name for (name, module) in split_gm.named_modules()]

    for name in names:
        if "." in name or name == "":
            # recursive child module or the root module
            continue

        module = getattr(split_gm, name)

        graph_id = int(name.replace("submod_", ""))
        outputs.append(SplitItem(name, graph_id, (graph_id in split_op_graphs), module))

    # sort by integer graph_id, rather than string name
    outputs.sort(key=lambda x: x.graph_id)

    return split_gm, outputs

wrap_with_cudagraph_if_needed

wrap_with_cudagraph_if_needed(
    piecewise_backend: Any,
    vllm_config: VllmConfig,
    compilation_config: CompilationConfig,
    is_first_graph: bool,
    is_last_graph: bool,
) -> Any

Wrap a piecewise backend with CUDA graph wrapper if needed. This function is shared between VllmBackend and construct_serializable_fn_from_inductor_cache.

Parameters:

Name Type Description Default
piecewise_backend Any

The backend to wrap

required
vllm_config VllmConfig

The vLLM configuration

required
compilation_config CompilationConfig

The compilation configuration

required
is_first_graph bool

Whether this is the first graph in the sequence

required
is_last_graph bool

Whether this is the last graph in the sequence

required

Returns:

Type Description
Any

The wrapped backend if CUDA graphs are enabled, otherwise the original backend

Source code in vllm/compilation/backends.py
def wrap_with_cudagraph_if_needed(
    piecewise_backend: Any,
    vllm_config: VllmConfig,
    compilation_config: CompilationConfig,
    is_first_graph: bool,
    is_last_graph: bool,
) -> Any:
    """
    Wrap a piecewise backend with CUDA graph wrapper if needed.
    This function is shared between VllmBackend and
    construct_serializable_fn_from_inductor_cache.

    Args:
        piecewise_backend: The backend to wrap
        vllm_config: The vLLM configuration
        compilation_config: The compilation configuration
        is_first_graph: Whether this is the first graph in the sequence
        is_last_graph: Whether this is the last graph in the sequence

    Returns:
        The wrapped backend if CUDA graphs are enabled, otherwise the original backend
    """
    if (
        not compilation_config.cudagraph_mode.has_piecewise_cudagraphs()
        or compilation_config.use_inductor_graph_partition
    ):
        return piecewise_backend

    # We're using Dynamo-based piecewise splitting, so we wrap
    # the whole subgraph with a static graph wrapper.
    from .cuda_graph import CUDAGraphOptions

    # resolve the static graph wrapper class (e.g. CUDAGraphWrapper
    # class) as platform dependent.
    static_graph_wrapper_class = resolve_obj_by_qualname(
        current_platform.get_static_graph_wrapper_cls()
    )

    # Always assign PIECEWISE runtime mode to the
    # CUDAGraphWrapper for piecewise_backend, to distinguish
    # it from the FULL cudagraph runtime mode, no matter it
    # is wrapped on a full or piecewise fx graph.
    return static_graph_wrapper_class(
        runnable=piecewise_backend,
        vllm_config=vllm_config,
        runtime_mode=CUDAGraphMode.PIECEWISE,
        cudagraph_options=CUDAGraphOptions(
            debug_log_enable=is_first_graph,
            gc_disable=not is_first_graph,
            weak_ref_output=is_last_graph,
        ),
    )