vllm.model_executor.layers.fused_moe.mori_prepare_finalize ¶
MoriPrepareAndFinalize ¶
Bases: FusedMoEPrepareAndFinalize
Prepare/Finalize using MoRI kernels.
Source code in vllm/model_executor/layers/fused_moe/mori_prepare_finalize.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 | |
__init__ ¶
__init__(
mori_op: EpDispatchCombineOp,
max_tokens_per_rank: int,
num_dispatchers: int,
use_fp8_dispatch: bool = False,
)
Source code in vllm/model_executor/layers/fused_moe/mori_prepare_finalize.py
finalize ¶
finalize(
output: Tensor,
fused_expert_output: Tensor,
topk_weights: Tensor,
topk_ids: Tensor,
apply_router_weight_on_input: bool,
weight_and_reduce_impl: TopKWeightAndReduce,
) -> None
Source code in vllm/model_executor/layers/fused_moe/mori_prepare_finalize.py
num_dispatchers ¶
prepare ¶
prepare(
a1: Tensor,
topk_weights: Tensor,
topk_ids: Tensor,
num_experts: int,
expert_map: Tensor | None,
apply_router_weight_on_input: bool,
quant_config: FusedMoEQuantConfig,
) -> PrepareResultType
Returns a tuple of: - quantized + dispatched a. - Optional quantized + dispatched a1_scales. - Optional ExpertTokensMetadata containing gpu/cpu tensors as big as the number of local experts with the information about the number of tokens assigned to each local expert. - Optional dispatched expert topk IDs - Optional dispatched expert topk weight