Skip to content

vllm.model_executor.models.adapters

SEQ_CLS_LOAD_METHODS module-attribute

SEQ_CLS_LOAD_METHODS = {
    "from_2_way_softmax": load_weights_using_from_2_way_softmax,
    "no_post_processing": load_weights_no_post_processing,
}

_GENERATE_SUFFIXES module-attribute

_GENERATE_SUFFIXES = [
    "ForCausalLM",
    "ForConditionalGeneration",
    "ChatModel",
    "LMHeadModel",
]

_T module-attribute

_T = TypeVar('_T', bound=type[Module])

logger module-attribute

logger = init_logger(__name__)

SequenceClassificationConfig

Bases: VerifyAndUpdateConfig

Source code in vllm/model_executor/models/adapters.py
class SequenceClassificationConfig(VerifyAndUpdateConfig):
    @staticmethod
    def verify_and_update_config(vllm_config: "VllmConfig") -> None:
        hf_config = vllm_config.model_config.hf_config
        text_config = hf_config.get_text_config()
        method = getattr(hf_config, "method", getattr(text_config, "method", None))
        tokens = getattr(
            hf_config,
            "classifier_from_token",
            getattr(text_config, "classifier_from_token", None),
        )

        if method is None:
            return

        assert tokens is not None
        assert method in SEQ_CLS_LOAD_METHODS, f"method {method} not supported"

        if method == "from_2_way_softmax":
            assert len(tokens) == 2
            hf_config.num_labels = 1
            text_config.num_labels = 1
        else:
            hf_config.num_labels = len(tokens)
            text_config.num_labels = len(tokens)

        # `llm as reranker` defaults to not using separating token.
        use_sep_token = getattr(text_config, "use_sep_token", False)
        text_config.use_sep_token = use_sep_token

verify_and_update_config staticmethod

verify_and_update_config(vllm_config: VllmConfig) -> None
Source code in vllm/model_executor/models/adapters.py
@staticmethod
def verify_and_update_config(vllm_config: "VllmConfig") -> None:
    hf_config = vllm_config.model_config.hf_config
    text_config = hf_config.get_text_config()
    method = getattr(hf_config, "method", getattr(text_config, "method", None))
    tokens = getattr(
        hf_config,
        "classifier_from_token",
        getattr(text_config, "classifier_from_token", None),
    )

    if method is None:
        return

    assert tokens is not None
    assert method in SEQ_CLS_LOAD_METHODS, f"method {method} not supported"

    if method == "from_2_way_softmax":
        assert len(tokens) == 2
        hf_config.num_labels = 1
        text_config.num_labels = 1
    else:
        hf_config.num_labels = len(tokens)
        text_config.num_labels = len(tokens)

    # `llm as reranker` defaults to not using separating token.
    use_sep_token = getattr(text_config, "use_sep_token", False)
    text_config.use_sep_token = use_sep_token

_create_pooling_model_cls

_create_pooling_model_cls(orig_cls: _T) -> _T
Source code in vllm/model_executor/models/adapters.py
def _create_pooling_model_cls(orig_cls: _T) -> _T:
    # Lazy import
    from vllm.model_executor.layers.logits_processor import LogitsProcessor
    from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead

    from .utils import AutoWeightsLoader, StageMissingLayer, no_init_weights

    class ModelForPooling(orig_cls, VllmModelForPooling):
        is_pooling_model = True

        def __init__(
            self,
            *,
            vllm_config: "VllmConfig",
            prefix: str = "",
            **kwargs: Any,
        ) -> None:
            with no_init_weights(
                self,
                lambda mod: StageMissingLayer("output", mod),
                targets=(LogitsProcessor, ParallelLMHead),
            ):
                super().__init__(vllm_config=vllm_config, prefix=prefix, **kwargs)

            # Used by SEQ_CLS_LOAD_METHODS
            self.vllm_config = vllm_config

            # If the model already defines a pooler instance, don't overwrite it
            pooler = getattr(self, "pooler", None)
            if not pooler and supports_multimodal(self):
                # Try to get the pooler from the LM backbone
                language_model = self.get_language_model()
                if hasattr(language_model, "pooler"):
                    pooler = language_model.pooler

            if not pooler:
                pooler = self._init_pooler(vllm_config, prefix=prefix)

            self.pooler = pooler

        def _init_pooler(
            self,
            vllm_config: "VllmConfig",
            prefix: str = "",
        ) -> "Pooler":
            raise NotImplementedError

        def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
            params_dict = dict(self.named_parameters())

            # We support loading from both `*ForCausalLM` and `*Model`
            candidate_prefixes = ["", "model."]
            target_prefix = ""

            seen_weights = list[tuple[str, torch.Tensor]]()
            for name, loaded_weight in weights:
                seen_weights.append((name, loaded_weight))

                try:
                    target_prefix = next(
                        prefix
                        for prefix in candidate_prefixes
                        if prefix + name in params_dict
                    )
                    break
                except StopIteration:
                    # The weight might not exist on the model
                    # (to be handled by AutoWeightsLoader)
                    pass

            if target_prefix:
                target_model = self
                for attr in target_prefix.split("."):
                    if attr:
                        target_model = getattr(self, attr)

                logger.info(
                    "Mapping weights to %s as they are "
                    "relative to this model instead of %s.",
                    target_model._get_name(),
                    self._get_name(),
                )

            mapped_weights = (
                (target_prefix + name, weight)
                for name, weight in (*seen_weights, *weights)
            )

            def default_load_weights(weights):
                loader = AutoWeightsLoader(self)
                return loader.load_weights(weights)

            load_weights = getattr(super(), "load_weights", default_load_weights)
            return load_weights(mapped_weights)

    return ModelForPooling  # type: ignore

_disable_seq_cls_loading_on_inner_model

_disable_seq_cls_loading_on_inner_model(
    language_model, is_vlm: bool
)

Context manager to temporarily disable sequence classification loading on inner VLM models to prevent recursive seq_cls_model_loader calls.

Source code in vllm/model_executor/models/adapters.py
@contextmanager
def _disable_seq_cls_loading_on_inner_model(language_model, is_vlm: bool):
    """
    Context manager to temporarily disable sequence classification loading
    on inner VLM models to prevent recursive seq_cls_model_loader calls.
    """
    if not is_vlm:
        yield
        return

    inner_hf_config = getattr(language_model, "config", None)
    if inner_hf_config is None:
        yield
        return

    inner_text_config = inner_hf_config.get_text_config()
    original_method = getattr(inner_text_config, "method", None)
    original_tokens = getattr(inner_text_config, "classifier_from_token", None)
    original_hf_tokens = getattr(inner_hf_config, "classifier_from_token", None)

    try:
        if original_method is not None:
            inner_text_config.method = None
        if original_tokens is not None:
            inner_text_config.classifier_from_token = None
        if original_hf_tokens is not None:
            inner_hf_config.classifier_from_token = None
        yield
    finally:
        if original_method is not None:
            inner_text_config.method = original_method
        if original_tokens is not None:
            inner_text_config.classifier_from_token = original_tokens
        if original_hf_tokens is not None:
            inner_hf_config.classifier_from_token = original_hf_tokens

_get_language_model_for_seq_cls

_get_language_model_for_seq_cls(model) -> Module

Get the language model component for sequence classification conversion. For VLMs, returns the inner language model. For standard LLMs, returns model itself.

Source code in vllm/model_executor/models/adapters.py
def _get_language_model_for_seq_cls(model) -> nn.Module:
    """
    Get the language model component for sequence classification conversion.
    For VLMs, returns the inner language model. For standard LLMs, returns model itself.
    """
    if supports_multimodal(model):
        try:
            lm = model.get_language_model()
            if lm is not model:
                return lm
        except Exception:
            pass

    for attr_name in ("language_model", "lm", "text_model"):
        if hasattr(model, attr_name):
            candidate = getattr(model, attr_name)
            if (
                isinstance(candidate, nn.Module)
                and candidate is not model
                and hasattr(candidate, "model")
            ):
                return candidate

    for name, child in model.named_children():
        child_name = type(child).__name__
        if ("ForCausalLM" in child_name or "LMHead" in child_name) and hasattr(
            child, "model"
        ):
            return child

    return model

_get_pooling_model_name

_get_pooling_model_name(
    orig_model_name: str, pooling_suffix: str
) -> str
Source code in vllm/model_executor/models/adapters.py
def _get_pooling_model_name(orig_model_name: str, pooling_suffix: str) -> str:
    model_name = orig_model_name

    for generate_suffix in _GENERATE_SUFFIXES:
        model_name = model_name.removesuffix(generate_suffix)

    return model_name + pooling_suffix

_load_dense_weights

_load_dense_weights(
    linear: Linear, folder: str, model_config: ModelConfig
) -> bool

Load weights using vLLM's weight_loader pattern.

Source code in vllm/model_executor/models/adapters.py
def _load_dense_weights(
    linear: nn.Linear, folder: str, model_config: "ModelConfig"
) -> bool:
    """Load weights using vLLM's weight_loader pattern."""
    from vllm.model_executor.model_loader.weight_utils import default_weight_loader

    for filename in ["model.safetensors", "pytorch_model.bin"]:
        file_path = f"{folder}/{filename}" if folder else filename

        try:
            file_bytes = get_hf_file_bytes(
                file_path, model_config.model, model_config.revision
            )
            if not file_bytes:
                continue

            if filename.endswith(".safetensors"):
                from safetensors.torch import load as load_safetensors

                state_dict = load_safetensors(file_bytes)
            else:
                import io

                state_dict = torch.load(
                    io.BytesIO(file_bytes), map_location="cpu", weights_only=True
                )

            for weight_key in ["weight", "linear.weight", "dense.weight"]:
                if weight_key in state_dict:
                    weight_loader = getattr(
                        linear.weight, "weight_loader", default_weight_loader
                    )
                    weight_loader(linear.weight, state_dict[weight_key])

                    bias_key = weight_key.replace("weight", "bias")
                    if linear.bias is not None and bias_key in state_dict:
                        bias_loader = getattr(
                            linear.bias, "weight_loader", default_weight_loader
                        )
                        bias_loader(linear.bias, state_dict[bias_key])
                    return True
        except Exception:
            logger.exception("Failed to load %s", filename)
            continue

    return False

_load_st_projector

_load_st_projector(
    model_config: ModelConfig,
) -> Module | None

Load Sentence-Transformers Dense projection layers.

Source code in vllm/model_executor/models/adapters.py
def _load_st_projector(model_config: "ModelConfig") -> nn.Module | None:
    """Load Sentence-Transformers Dense projection layers."""

    dense_modules = try_get_dense_modules(
        model_config.model, revision=model_config.revision
    )

    if dense_modules is None:
        return

    try:
        layers = []
        for layer_config in dense_modules:
            folder = layer_config["folder"]
            linear = nn.Linear(
                layer_config["in_features"],
                layer_config["out_features"],
                bias=layer_config.get("bias", True),
                dtype=model_config.head_dtype,
            )
            if not _load_dense_weights(linear, folder, model_config):
                continue
            layers.append(linear)
            if act_name := layer_config.get("activation_function"):
                layers.append(get_act_fn(act_name))
        return nn.Sequential(*layers).to(dtype=model_config.head_dtype)
    except Exception:
        logger.exception("ST projector loading failed")

    return None

as_embedding_model

as_embedding_model(cls: _T) -> _T

Subclass an existing vLLM model to support embeddings.

By default, the embeddings of the whole prompt are extracted from the normalized hidden state corresponding to the last token.

Note

We assume that no extra layers are added to the original model; please implement your own model if this is not the case.

Source code in vllm/model_executor/models/adapters.py
def as_embedding_model(cls: _T) -> _T:
    """
    Subclass an existing vLLM model to support embeddings.

    By default, the embeddings of the whole prompt are extracted from the
    normalized hidden state corresponding to the last token.

    Note:
        We assume that no extra layers are added to the original model;
        please implement your own model if this is not the case.
    """
    # Avoid modifying existing embedding models
    if is_pooling_model(cls):
        return cls

    # Lazy import
    from vllm.model_executor.layers.pooler import DispatchPooler

    class ModelForEmbedding(_create_pooling_model_cls(cls)):
        def _init_pooler(
            self,
            vllm_config: "VllmConfig",
            prefix: str = "",
        ) -> "Pooler":
            pooler_config = vllm_config.model_config.pooler_config
            assert pooler_config is not None

            return DispatchPooler.for_embedding(pooler_config)

    ModelForEmbedding.__name__ = _get_pooling_model_name(cls.__name__, "ForEmbedding")

    return ModelForEmbedding  # type: ignore

as_seq_cls_model

as_seq_cls_model(cls: _T) -> _T

Subclass an existing vLLM model to support classify and score tasks.

By default, the class probabilities are extracted from the softmaxed hidden state corresponding to the last token.

Note

We assume that the classification head is a single linear layer stored as the attribute score of the top-level model; please implement your own model if this is not the case.

Source code in vllm/model_executor/models/adapters.py
def as_seq_cls_model(cls: _T) -> _T:
    """
    Subclass an existing vLLM model to support classify and score tasks.

    By default, the class probabilities are extracted from the softmaxed
    hidden state corresponding to the last token.

    Note:
        We assume that the classification head is a single linear layer
        stored as the attribute `score` of the top-level model;
        please implement your own model if this is not the case.
    """
    # Avoid modifying existing classification models
    if is_pooling_model(cls):
        return cls

    # Lazy import
    from vllm.model_executor.layers.linear import ReplicatedLinear
    from vllm.model_executor.layers.pooler import DispatchPooler
    from vllm.model_executor.models.interfaces import SupportsCrossEncoding

    from .utils import maybe_prefix

    class ModelForSequenceClassification(
        _create_pooling_model_cls(cls), SupportsCrossEncoding
    ):
        def _init_pooler(
            self,
            vllm_config: "VllmConfig",
            prefix: str = "",
        ) -> "Pooler":
            text_config = vllm_config.model_config.hf_config.get_text_config()
            model_config = vllm_config.model_config
            quant_config = vllm_config.quant_config

            self.score = ReplicatedLinear(
                model_config.get_hidden_size(),
                text_config.num_labels,
                bias=False,
                params_dtype=vllm_config.model_config.head_dtype,
                quant_config=quant_config,
                return_bias=False,
                prefix=maybe_prefix(prefix, "score"),
            )

            pooler_config = vllm_config.model_config.pooler_config
            assert pooler_config is not None

            return DispatchPooler.for_seq_cls(pooler_config, classifier=self.score)

        def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
            hf_config = self.config
            text_config = hf_config.get_text_config()
            tokens = getattr(
                hf_config,
                "classifier_from_token",
                getattr(text_config, "classifier_from_token", None),
            )
            method = getattr(hf_config, "method", getattr(text_config, "method", None))

            def auto_set_score_bias(weights):
                for name, weight in weights:
                    if name == "score.bias":
                        device = self.score.weight.device
                        dtype = self.score.weight.dtype
                        bias = weight.to(device).to(dtype)
                        self.score.bias = torch.nn.Parameter(bias)
                        self.score.skip_bias_add = False
                    else:
                        yield name, weight

            weights = auto_set_score_bias(weights)
            if tokens is None and method is None:
                return super().load_weights(weights)
            else:
                # Online convert ForCausalLM into
                # ForSequenceClassification model.
                return seq_cls_model_loader(self, weights)

    ModelForSequenceClassification.__name__ = _get_pooling_model_name(
        cls.__name__, "ForSequenceClassification"
    )

    return ModelForSequenceClassification  # type: ignore

load_weights_no_post_processing

load_weights_no_post_processing(
    model, weights: Iterable[tuple[str, Tensor]]
)
Source code in vllm/model_executor/models/adapters.py
def load_weights_no_post_processing(model, weights: Iterable[tuple[str, torch.Tensor]]):
    from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
    from vllm.model_executor.model_loader.weight_utils import default_weight_loader

    model_config = model.vllm_config.model_config
    quant_config = model.vllm_config.quant_config
    text_config = model.config.get_text_config()

    tokens = getattr(text_config, "classifier_from_token", [])
    tokens = cast(list[int], tokens)
    assert len(tokens) > 0

    language_model = _get_language_model_for_seq_cls(model)
    is_vlm = language_model is not model

    language_model.lm_head = ParallelLMHead(
        text_config.vocab_size, text_config.hidden_size, quant_config=quant_config
    )
    if text_config.tie_word_embeddings:
        # embed_tokens is the assumed name for input embeddings. If the model does not
        # have this attribute, we fall back to get_input_embeddings(), which is used by
        # the Transformers modeling backend.
        text_backbone = language_model.model
        embed_tokens = (
            text_backbone.embed_tokens
            if hasattr(text_backbone, "embed_tokens")
            else text_backbone.get_input_embeddings()
        )
        language_model.lm_head = language_model.lm_head.tie_weights(embed_tokens)

    with _disable_seq_cls_loading_on_inner_model(language_model, is_vlm):
        pooling_model_cls = next(
            x for x in type(model).__mro__ if x.__name__ == "ModelForPooling"
        )
        # Skip ModelForSequenceClassification in MRO to avoid infinite recursion
        loaded_weights = pooling_model_cls.load_weights(model, weights)

    from vllm.tokenizers import get_tokenizer

    tokenizer = get_tokenizer(
        model_config.tokenizer,
        revision=model_config.tokenizer_revision,
        tokenizer_mode=model_config.tokenizer_mode,
        trust_remote_code=model_config.trust_remote_code,
    )

    token_ids = [tokenizer.convert_tokens_to_ids(t) for t in tokens]
    score_weight = language_model.lm_head.weight.data[token_ids]

    score_layer = language_model.score if is_vlm else model.score
    param = score_layer.weight
    weight_loader = getattr(param, "weight_loader", default_weight_loader)
    weight_loader(param, score_weight)

    del language_model.lm_head

    score_weight_name = "language_model.score.weight" if is_vlm else "score.weight"
    loaded_weights.add(score_weight_name)

    lm_head_name = "lm_head.weight"
    if hf_to_vllm_mapper := getattr(model, "hf_to_vllm_mapper", None):
        lm_head_name = hf_to_vllm_mapper._map_name(lm_head_name)
    loaded_weights.discard(lm_head_name)
    return loaded_weights

load_weights_using_from_2_way_softmax

load_weights_using_from_2_way_softmax(
    model, weights: Iterable[tuple[str, Tensor]]
)
Source code in vllm/model_executor/models/adapters.py
def load_weights_using_from_2_way_softmax(
    model, weights: Iterable[tuple[str, torch.Tensor]]
):
    # refer to https://huggingface.co/Qwen/Qwen3-Reranker-0.6B/discussions/3
    from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
    from vllm.model_executor.model_loader.weight_utils import default_weight_loader

    model_config = model.vllm_config.model_config
    quant_config = model.vllm_config.quant_config
    hf_config = model.config
    text_config = hf_config.get_text_config()

    tokens = getattr(
        hf_config,
        "classifier_from_token",
        getattr(text_config, "classifier_from_token", []),
    )
    tokens = cast(list[int], tokens)
    assert len(tokens) == 2

    language_model = _get_language_model_for_seq_cls(model)
    is_vlm = language_model is not model

    language_model.lm_head = ParallelLMHead(
        text_config.vocab_size, text_config.hidden_size, quant_config=quant_config
    )
    if text_config.tie_word_embeddings:
        # embed_tokens is the assumed name for input embeddings. If the model does not
        # have this attribute, we fall back to get_input_embeddings(), which is used by
        # the Transformers modeling backend.
        text_backbone = language_model.model
        embed_tokens = (
            text_backbone.embed_tokens
            if hasattr(text_backbone, "embed_tokens")
            else text_backbone.get_input_embeddings()
        )
        language_model.lm_head = language_model.lm_head.tie_weights(embed_tokens)

    with _disable_seq_cls_loading_on_inner_model(language_model, is_vlm):
        # ModelForPooling is dynamically defined inside the _create_pooling_model_cls
        # function, so we need use this hacky method to obtain it.
        pooling_model_cls = next(
            x for x in type(model).__mro__ if x.__name__ == "ModelForPooling"
        )
        loaded_weights = pooling_model_cls.load_weights(model, weights)

    from vllm.tokenizers import get_tokenizer

    tokenizer = get_tokenizer(
        model_config.tokenizer,
        revision=model_config.tokenizer_revision,
        tokenizer_mode=model_config.tokenizer_mode,
        trust_remote_code=model_config.trust_remote_code,
    )

    false_id = tokenizer.convert_tokens_to_ids(tokens[0])
    true_id = tokenizer.convert_tokens_to_ids(tokens[1])
    lm_head_weight = language_model.lm_head.weight
    score_weight = lm_head_weight.data[[true_id]].to(
        torch.float32
    ) - lm_head_weight.data[[false_id]].to(torch.float32)

    score_layer = language_model.score if is_vlm else model.score
    param = score_layer.weight
    weight_loader = getattr(param, "weight_loader", default_weight_loader)
    weight_loader(param, score_weight)

    del language_model.lm_head

    score_weight_name = "language_model.score.weight" if is_vlm else "score.weight"
    loaded_weights.add(score_weight_name)

    lm_head_name = "lm_head.weight"
    if hf_to_vllm_mapper := getattr(model, "hf_to_vllm_mapper", None):
        lm_head_name = hf_to_vllm_mapper._map_name(lm_head_name)
    loaded_weights.discard(lm_head_name)
    return loaded_weights

seq_cls_model_loader

seq_cls_model_loader(
    model, weights: Iterable[tuple[str, Tensor]]
)
Source code in vllm/model_executor/models/adapters.py
def seq_cls_model_loader(model, weights: Iterable[tuple[str, torch.Tensor]]):
    # Online convert ForCausalLM into ForSequenceClassification model.
    # - from_2_way_softmax:
    #   - Qwen3ForCausalLM
    #     - Qwen3-Reranker
    #   - Qwen2ForCausalLM
    #     - mxbai-rerank-v2
    # - no_post_processing:
    #   - GemmaForCausalLM
    #     - bge-reranker-v2-gemma

    hf_config = model.vllm_config.model_config.hf_config
    text_config = hf_config.get_text_config()
    method = getattr(hf_config, "method", getattr(text_config, "method", None))
    assert method in SEQ_CLS_LOAD_METHODS, f"method {method} not supported"
    return SEQ_CLS_LOAD_METHODS[method](model, weights)