vllm.model_executor.models.step_vl ¶
This is basically a copy from perception_models/core/vision_encoder/pe.py
PerceptionEncoder ¶
Bases: Module
Source code in vllm/model_executor/models/step_vl.py
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 | |
conv1 instance-attribute ¶
conv1 = Conv2dLayer(
in_channels=3,
out_channels=width,
kernel_size=patch_size,
stride=patch_size,
bias=False,
)
positional_embedding instance-attribute ¶
positional_embedding = Parameter(
width**-0.5
* randn(int(use_cls_token) + posemb_grid_size**2, width)
)
transformer instance-attribute ¶
transformer = PerceptionEncoderVisionTransformer(
width,
layers,
heads,
max_grid_height=image_size // patch_size,
max_grid_width=image_size // patch_size,
mlp_ratio=mlp_ratio,
ls_init_value=ls_init_value,
act_layer=act_layer,
norm_layer=norm_layer,
use_cls_token=use_cls_token,
quant_config=quant_config,
prefix=f"{prefix}.transformer",
use_data_parallel=use_data_parallel,
)
vit_downsampler1 instance-attribute ¶
vit_downsampler1 = Conv2dLayer(
width, width * 2, kernel_size=3, stride=2, padding=1
)
vit_downsampler2 instance-attribute ¶
vit_downsampler2 = Conv2dLayer(
width * 2, width * 4, kernel_size=3, stride=2, padding=1
)
__init__ ¶
__init__(
config,
act_layer: Callable,
norm_layer: Callable = _DEFAULT_NORM_LAYER,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
use_data_parallel: bool = False,
)
Source code in vllm/model_executor/models/step_vl.py
forward_features ¶
forward_features(x: Tensor)
Source code in vllm/model_executor/models/step_vl.py
sample_abs_posemb ¶
Source code in vllm/model_executor/models/step_vl.py
PerceptionEncoderLayerScale ¶
PerceptionEncoderMLP ¶
Bases: Module
Source code in vllm/model_executor/models/step_vl.py
fc1 instance-attribute ¶
fc1 = ColumnParallelLinear(
input_dim,
hidden_dim,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.fc1",
disable_tp=use_data_parallel,
)
fc2 instance-attribute ¶
fc2 = RowParallelLinear(
hidden_dim,
input_dim,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.fc2",
disable_tp=use_data_parallel,
)
__init__ ¶
__init__(
input_dim: int,
hidden_dim: int,
act_layer: Callable[[], Module],
quant_config: QuantizationConfig | None = None,
prefix: str = "",
use_data_parallel: bool = False,
)
Source code in vllm/model_executor/models/step_vl.py
PerceptionEncoderRope2D ¶
Bases: Module
Source code in vllm/model_executor/models/step_vl.py
__init__ ¶
__init__(
dim: int,
max_grid_height: int,
max_grid_width: int,
use_cls_token: bool = False,
theta=10000,
max_freq=10,
num_freqs=1,
theta_rescale_factor=1.0,
)
Source code in vllm/model_executor/models/step_vl.py
_compute_2d_freqs ¶
_compute_2d_freqs() -> Tensor
Source code in vllm/model_executor/models/step_vl.py
_compute_freqs ¶
_compute_inv_freq ¶
forward ¶
Source code in vllm/model_executor/models/step_vl.py
PerceptionEncoderVisionAttention ¶
Bases: Module
Source code in vllm/model_executor/models/step_vl.py
out_proj instance-attribute ¶
out_proj = RowParallelLinear(
embed_dim,
embed_dim,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.out_proj",
disable_tp=use_data_parallel,
)
qkv_proj instance-attribute ¶
qkv_proj = QKVParallelLinear(
embed_dim,
head_dim,
total_num_heads,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
disable_tp=use_data_parallel,
)
rope instance-attribute ¶
rope = PerceptionEncoderRope2D(
dim=head_dim,
max_grid_height=max_grid_height,
max_grid_width=max_grid_width,
use_cls_token=use_cls_token,
)
__init__ ¶
__init__(
embed_dim: int,
num_heads: int,
max_grid_height: int,
max_grid_width: int,
use_cls_token: bool = False,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
use_data_parallel: bool = False,
)
Source code in vllm/model_executor/models/step_vl.py
forward ¶
Source code in vllm/model_executor/models/step_vl.py
PerceptionEncoderVisionBlock ¶
Bases: Module
Source code in vllm/model_executor/models/step_vl.py
attn instance-attribute ¶
attn = PerceptionEncoderVisionAttention(
d_model,
n_head,
max_grid_height=max_grid_height,
max_grid_width=max_grid_width,
use_cls_token=use_cls_token,
quant_config=quant_config,
prefix=f"{prefix}.attn",
use_data_parallel=use_data_parallel,
)
ls_1 instance-attribute ¶
ls_1 = (
PerceptionEncoderLayerScale(d_model, ls_init_value)
if ls_init_value is not None
else Identity()
)
ls_2 instance-attribute ¶
ls_2 = (
PerceptionEncoderLayerScale(d_model, ls_init_value)
if ls_init_value is not None
else Identity()
)
mlp instance-attribute ¶
mlp = PerceptionEncoderMLP(
d_model,
hidden_dim,
act_layer,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
use_data_parallel=use_data_parallel,
)
__init__ ¶
__init__(
d_model: int,
n_head: int,
max_grid_height: int,
max_grid_width: int,
mlp_ratio: float = 4.0,
ls_init_value: float = None,
act_layer: Callable = GELU,
norm_layer: Callable = LayerNorm,
use_cls_token: bool = False,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
use_data_parallel: bool = False,
)
Source code in vllm/model_executor/models/step_vl.py
PerceptionEncoderVisionTransformer ¶
Bases: Module
Source code in vllm/model_executor/models/step_vl.py
resblocks instance-attribute ¶
resblocks = ModuleList(
[
(
PerceptionEncoderVisionBlock(
d_model=width,
n_head=heads,
max_grid_height=max_grid_height,
max_grid_width=max_grid_width,
mlp_ratio=mlp_ratio,
ls_init_value=ls_init_value,
act_layer=act_layer,
norm_layer=norm_layer,
use_cls_token=use_cls_token,
quant_config=quant_config,
prefix=f"{prefix}.resblocks.{i}",
use_data_parallel=use_data_parallel,
)
)
for i in (range(layers))
]
)
__init__ ¶
__init__(
width: int,
layers: int,
heads: int,
max_grid_height: int,
max_grid_width: int,
mlp_ratio: float = 4.0,
ls_init_value: float = None,
act_layer: Callable = GELU,
norm_layer: Callable = LayerNorm,
use_cls_token: bool = False,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
use_data_parallel: bool = False,
)
Source code in vllm/model_executor/models/step_vl.py
StepVLForConditionalGeneration ¶
Bases: Step3VLForConditionalGeneration
Source code in vllm/model_executor/models/step_vl.py
hf_to_vllm_mapper class-attribute instance-attribute ¶
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_prefix={
"model.": "language_model.model.",
"lm_head.": "language_model.lm_head.",
},
orig_to_new_substr={
".attn.in_proj_weight": ".attn.qkv_proj.weight",
".attn.in_proj_bias": ".attn.qkv_proj.bias",
".mlp.c_fc": ".mlp.fc1",
".mlp.c_proj": ".mlp.fc2",
},
)
language_model instance-attribute ¶
language_model = init_vllm_registered_model(
vllm_config=vllm_config,
hf_config=text_config,
prefix=maybe_prefix(prefix, "language_model"),
)
make_empty_intermediate_tensors instance-attribute ¶
vision_model instance-attribute ¶
vision_model = PerceptionEncoder(
vision_config,
get_act_fn(hidden_act),
quant_config=quant_config,
prefix=maybe_prefix(prefix, "vision_model"),
use_data_parallel=use_data_parallel,
)
vit_large_projector instance-attribute ¶
vit_large_projector = ColumnParallelLinear(
width * 4,
hidden_size,
bias=projector_bias,
gather_output=True,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "vit_large_projector"),
disable_tp=use_data_parallel,
)
__init__ ¶
__init__(
*, vllm_config: VllmConfig, prefix: str = ""
) -> None