Skip to content

vllm.v1.worker.gpu.model_runner

logger module-attribute

logger = init_logger(__name__)

GPUModelRunner

Bases: LoRAModelRunnerMixin

Source code in vllm/v1/worker/gpu/model_runner.py
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
class GPUModelRunner(LoRAModelRunnerMixin):
    def __init__(
        self,
        vllm_config: VllmConfig,
        device: torch.device,
    ):
        self.vllm_config = vllm_config
        self.model_config = vllm_config.model_config
        self.cache_config = vllm_config.cache_config
        self.compilation_config = vllm_config.compilation_config
        self.lora_config = vllm_config.lora_config
        self.load_config = vllm_config.load_config
        self.parallel_config = vllm_config.parallel_config
        self.scheduler_config = vllm_config.scheduler_config
        self.speculative_config = vllm_config.speculative_config
        self.observability_config = vllm_config.observability_config

        self.device = device
        self.dtype = self.model_config.dtype
        self.kv_cache_dtype = self.dtype
        if self.cache_config.cache_dtype != "auto":
            # Quantized KV cache.
            self.kv_cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[
                self.cache_config.cache_dtype
            ]
        self.is_pooling_model = False

        self.vocab_size = self.model_config.get_vocab_size()
        self.max_model_len = self.model_config.max_model_len
        self.max_num_tokens = self.scheduler_config.max_num_batched_tokens
        self.max_num_reqs = self.scheduler_config.max_num_seqs
        self.inputs_embeds_size = self.model_config.get_inputs_embeds_size()

        # Multimodal
        self.mm_registry = MULTIMODAL_REGISTRY
        self.supports_mm_inputs = self.mm_registry.supports_multimodal_inputs(
            self.model_config
        )
        if self.supports_mm_inputs:
            self.encoder_runner = EncoderRunner(
                max_num_tokens=self.max_num_tokens,
                hidden_size=self.inputs_embeds_size,
                dtype=self.dtype,
                device=self.device,
            )
        self.uses_mrope = self.model_config.uses_mrope
        if self.uses_mrope:
            self.mrope_states = MRopeState(
                max_num_reqs=self.max_num_reqs,
                max_num_tokens=self.max_num_tokens,
                max_model_len=self.max_model_len,
                device=self.device,
            )

        self.use_async_scheduling = self.scheduler_config.async_scheduling
        self.output_copy_stream = torch.cuda.Stream(self.device)
        self.output_copy_event = torch.cuda.Event()
        if self.use_async_scheduling:
            self.input_prep_event = torch.cuda.Event()
            self.structured_outputs_event = torch.cuda.Event()
        else:
            self.input_prep_event = None
            self.structured_outputs_event = None

        if self.speculative_config is not None:
            self.do_spec_decode = True
            self.num_speculative_steps = self.speculative_config.num_speculative_tokens
            self.speculator = init_speculator(self.vllm_config, self.device)
        else:
            self.do_spec_decode = False
            self.num_speculative_steps = 0
            self.speculator = None

        self.req_states = RequestState(
            max_num_reqs=self.max_num_reqs,
            max_model_len=self.max_model_len,
            max_num_batched_tokens=self.max_num_tokens,
            num_speculative_steps=self.num_speculative_steps,
            vocab_size=self.vocab_size,
            device=self.device,
        )
        self.input_buffers = InputBuffers(
            max_num_reqs=self.max_num_reqs,
            max_num_tokens=self.max_num_tokens,
            device=self.device,
        )
        self.sampler = Sampler(
            max_num_reqs=self.max_num_reqs,
            vocab_size=self.vocab_size,
            device=self.device,
            logprobs_mode=self.model_config.logprobs_mode,
        )
        self.prompt_logprobs_worker = PromptLogprobsWorker(self.max_num_reqs)

        # CUDA graphs.
        self.cudagraph_manager = CudaGraphManager(
            self.vllm_config, self.uses_mrope, self.device
        )
        # Structured outputs worker.
        self.structured_outputs_worker = StructuredOutputsWorker(
            max_num_logits=self.max_num_reqs * (self.num_speculative_steps + 1),
            vocab_size=self.vocab_size,
        )

        # Buffers for CPU-to-GPU copies.
        self.tmp_idx_mapping = UvaBufferPool(self.max_num_reqs, torch.int32)
        self.tmp_cu_num_logits = UvaBufferPool(self.max_num_reqs + 1, torch.int32)
        self.tmp_query_start_loc = UvaBufferPool(self.max_num_reqs + 1, torch.int32)

        self.kv_connector: KVConnector = NO_OP_KV_CONNECTOR

    def update_max_model_len(self, max_model_len: int) -> None:
        self.max_model_len = max_model_len
        self.req_states.max_model_len = max_model_len

    def get_supported_tasks(self) -> tuple[str]:
        return ("generate",)

    def load_model(self, *args, **kwargs) -> None:
        time_before_load = time.perf_counter()
        with DeviceMemoryProfiler() as m:
            model_loader = get_model_loader(self.vllm_config.load_config)
            logger.info("Loading model from scratch...")

            self.model = model_loader.load_model(
                vllm_config=self.vllm_config,
                model_config=self.vllm_config.model_config,
            )
            if self.lora_config:
                self.model = self.load_lora_model(
                    self.model,
                    self.vllm_config,
                    self.device,
                )
            if self.do_spec_decode:
                self.speculator.load_model(self.model)
        time_after_load = time.perf_counter()

        self.model_memory_usage = m.consumed_memory
        logger.info(
            "Model loading took %s GiB and %.6f seconds",
            format_gib(m.consumed_memory),
            time_after_load - time_before_load,
        )

        prepare_communication_buffer_for_model(self.model)
        if self.do_spec_decode:
            speculator_model = getattr(self.speculator, "model", None)
            if speculator_model is not None:
                prepare_communication_buffer_for_model(speculator_model)

    def get_model(self) -> nn.Module:
        return self.model

    def get_kv_cache_spec(self):
        return get_kv_cache_spec(self.vllm_config)

    def initialize_kv_cache(self, kv_cache_config: KVCacheConfig) -> None:
        kv_cache_config = deepcopy(kv_cache_config)
        self.kv_cache_config = kv_cache_config
        block_sizes = [
            kv_cache_group.kv_cache_spec.block_size
            for kv_cache_group in kv_cache_config.kv_cache_groups
        ]

        self.block_tables = BlockTables(
            block_sizes=block_sizes,
            max_num_reqs=self.max_num_reqs,
            max_num_batched_tokens=self.max_num_tokens,
            max_model_len=self.max_model_len,
            device=self.device,
        )

        self.attn_backends, self.attn_metadata_builders = init_attn_backend(
            self.kv_cache_config,
            self.vllm_config,
            self.device,
        )
        if self.do_spec_decode:
            # HACK(woosuk)
            self.speculator.set_attn(
                self.kv_cache_config,
                self.attn_metadata_builders,
                self.block_tables,
            )

        self.kv_caches: list[torch.Tensor] = []
        kv_caches_dict = init_kv_cache(
            self.kv_caches,
            self.compilation_config.static_forward_context,
            self.kv_cache_config,
            self.attn_backends,
            self.device,
        )
        self.kv_connector = get_kv_connector(self.vllm_config, kv_caches_dict)

        # Attention groups are not supported.
        self.attn_groups = []  # type: ignore

    def prepare_dummy_attn_metadata(self, input_batch: InputBatch) -> None:
        block_tables = self.block_tables.get_dummy_block_tables(input_batch.num_reqs)
        slot_mappings = self.block_tables.get_dummy_slot_mappings(
            input_batch.num_tokens
        )
        attn_metadata = build_attn_metadata(
            attn_metadata_builders=self.attn_metadata_builders,
            num_reqs=input_batch.num_reqs,
            num_tokens=input_batch.num_tokens,
            query_start_loc_gpu=input_batch.query_start_loc,
            query_start_loc_cpu=torch.from_numpy(input_batch.query_start_loc_np),
            seq_lens=input_batch.seq_lens,
            max_seq_len=self.max_model_len,
            block_tables=block_tables,
            slot_mappings=slot_mappings,
            kv_cache_config=self.kv_cache_config,
        )
        input_batch.attn_metadata = attn_metadata

    @torch.inference_mode()
    def _dummy_run(
        self,
        num_tokens: int,
        *args,
        skip_attn: bool = True,
        **kwargs,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        # Create a dummy scheduler output.
        num_reqs = min(num_tokens, self.max_num_reqs)
        num_tokens_per_request = [num_tokens // num_reqs] * num_reqs
        num_tokens_per_request[-1] += num_tokens % num_reqs
        assert sum(num_tokens_per_request) == num_tokens
        num_scheduled_tokens = {
            f"_dummy_req_{i}": n for i, n in enumerate(num_tokens_per_request)
        }
        dummy_scheduler_output = SchedulerOutput.make_empty()
        dummy_scheduler_output.total_num_scheduled_tokens = num_tokens
        dummy_scheduler_output.num_scheduled_tokens = num_scheduled_tokens

        # Disable any use of KVConnector for dummy runs.
        self.kv_connector.set_disabled(True)

        # Execute the model.
        self.execute_model(
            dummy_scheduler_output, dummy_run=True, skip_attn_for_dummy_run=skip_attn
        )
        self.kv_connector.set_disabled(False)
        assert self.execute_model_state is not None
        hidden_states, input_batch, _ = self.execute_model_state
        sample_hidden_states = hidden_states[input_batch.logits_indices]
        return hidden_states, sample_hidden_states

    @torch.inference_mode()
    def _dummy_sampler_run(
        self,
        hidden_states: torch.Tensor,
    ) -> None:
        num_reqs = hidden_states.shape[0]
        logits = self.model.compute_logits(hidden_states)
        idx_mapping = torch.arange(num_reqs, dtype=torch.int32, device=self.device)
        idx_mapping_np = np.arange(num_reqs, dtype=np.int32)
        pos = torch.zeros(num_reqs, dtype=torch.int64, device=self.device)
        # NOTE(woosuk): During the initial memory profiling, the sampler may skip
        # top_k, top_p, and logprobs, using less GPU memory than what is possible
        # during actual execution.
        self.sampler(logits, idx_mapping, idx_mapping_np, pos)

    @torch.inference_mode()
    def profile_run(self) -> None:
        hidden_states, sample_hidden_states = self._dummy_run(
            self.max_num_tokens,
            skip_attn=True,
        )
        self._dummy_sampler_run(sample_hidden_states)
        if self.do_spec_decode:
            num_tokens_across_dp = make_num_tokens_across_dp(
                self.parallel_config.data_parallel_size, self.max_num_tokens
            )
            self.speculator.run_model(
                self.max_num_tokens,
                attn_metadata=None,
                num_tokens_across_dp=num_tokens_across_dp,
            )
        torch.cuda.synchronize()
        del hidden_states, sample_hidden_states
        gc.collect()

    def reset_mm_cache(self) -> None:
        pass

    def _get_num_input_tokens(self, num_scheduled_tokens: int) -> int:
        # SP is not supported yet.
        return num_scheduled_tokens

    @torch.inference_mode()
    def capture_model(self) -> int:
        if not self.cudagraph_manager.needs_capture():
            logger.warning(
                "Skipping CUDA graph capture. To turn on CUDA graph capture, "
                "ensure `cudagraph_mode` was not manually set to `NONE`"
            )
            return 0

        start_time = time.perf_counter()
        gc.collect()
        torch.cuda.empty_cache()
        start_free_gpu_memory = torch.cuda.mem_get_info()[0]

        with self.maybe_setup_dummy_loras(self.lora_config):
            mrope_positions = None
            if self.uses_mrope:
                mrope_positions = self.mrope_states.mrope_positions
            inputs_embeds = None
            if self.supports_mm_inputs:
                inputs_embeds = self.encoder_runner.inputs_embeds
            self.cudagraph_manager.capture(
                model=self.model,
                input_buffers=self.input_buffers,
                mrope_positions=mrope_positions,
                inputs_embeds=inputs_embeds,
                block_tables=self.block_tables,
                attn_metadata_builders=self.attn_metadata_builders,
                kv_cache_config=self.kv_cache_config,
            )
            if self.do_spec_decode:
                self.speculator.capture_model()

        end_time = time.perf_counter()
        end_free_gpu_memory = torch.cuda.mem_get_info()[0]
        elapsed_time = end_time - start_time
        cuda_graph_size = start_free_gpu_memory - end_free_gpu_memory
        # This usually takes 5~20 seconds.
        logger.info(
            "Graph capturing finished in %.0f secs, took %.2f GiB",
            elapsed_time,
            cuda_graph_size / (1 << 30),
        )
        return cuda_graph_size

    def warmup_for_prefill(self) -> None:
        # For FlashInfer, we would like to execute a dummy prefill run
        # to trigger JIT compilation.
        if all("FLASHINFER" in b.get_name() for b in self.attn_backends.values()):
            self._dummy_run(self.max_num_tokens, skip_attn=False)
            torch.cuda.synchronize()

    def finish_requests(self, scheduler_output: SchedulerOutput) -> None:
        if scheduler_output.preempted_req_ids is not None:
            for req_id in scheduler_output.preempted_req_ids:
                self.req_states.remove_request(req_id)
                if self.supports_mm_inputs:
                    self.encoder_runner.remove_request(req_id)
                self.prompt_logprobs_worker.remove_request(req_id)
        for req_id in scheduler_output.finished_req_ids:
            self.req_states.remove_request(req_id)
            if self.supports_mm_inputs:
                self.encoder_runner.remove_request(req_id)
            self.prompt_logprobs_worker.remove_request(req_id)

    def free_states(self, scheduler_output: SchedulerOutput) -> None:
        if self.supports_mm_inputs:
            for mm_hash in scheduler_output.free_encoder_mm_hashes:
                self.encoder_runner.free_encoder_cache(mm_hash)

    def add_requests(self, scheduler_output: SchedulerOutput) -> None:
        for new_req_data in scheduler_output.scheduled_new_reqs:
            assert new_req_data.prompt_token_ids is not None
            assert new_req_data.prefill_token_ids is not None
            assert new_req_data.sampling_params is not None
            req_id = new_req_data.req_id
            prompt_len = len(new_req_data.prompt_token_ids)
            self.req_states.add_request(
                req_id=req_id,
                prompt_len=prompt_len,
                prefill_token_ids=new_req_data.prefill_token_ids,
                num_computed_tokens=new_req_data.num_computed_tokens,
                lora_request=new_req_data.lora_request,
            )
            req_index = self.req_states.req_id_to_index[req_id]

            if self.supports_mm_inputs:
                self.encoder_runner.add_request(req_id, new_req_data.mm_features)

            # Pre-compute M-RoPE positions for prefill.
            if self.uses_mrope:
                self.mrope_states.init_prefill_mrope_positions(
                    req_index,
                    self.model,  # type: ignore
                    new_req_data.prefill_token_ids,
                    mm_features=new_req_data.mm_features,
                )

            self.block_tables.append_block_ids(
                req_index, new_req_data.block_ids, overwrite=True
            )
            self.sampler.add_request(
                req_index, prompt_len, new_req_data.sampling_params
            )
            self.prompt_logprobs_worker.add_request(
                req_id, req_index, new_req_data.sampling_params
            )

        if scheduler_output.scheduled_new_reqs:
            self.req_states.apply_staged_writes()
            self.sampler.apply_staged_writes(
                self.req_states.prefill_token_ids.gpu,
                self.req_states.prefill_len.np,
                self.req_states.prompt_len,
            )
            if self.uses_mrope:
                self.mrope_states.apply_staged_writes()

    def update_requests(self, scheduler_output: SchedulerOutput) -> None:
        # Add new blocks for the existing requests.
        cached_reqs = scheduler_output.scheduled_cached_reqs
        for i, req_id in enumerate(cached_reqs.req_ids):
            req_index = self.req_states.req_id_to_index[req_id]
            req_new_block_ids = cached_reqs.new_block_ids[i]
            if req_new_block_ids is not None:
                self.block_tables.append_block_ids(
                    req_index, req_new_block_ids, overwrite=False
                )

    def prepare_inputs(
        self,
        scheduler_output: SchedulerOutput,
        num_tokens_after_padding: int,
    ) -> InputBatch:
        num_tokens = scheduler_output.total_num_scheduled_tokens
        assert num_tokens > 0
        num_reqs = len(scheduler_output.num_scheduled_tokens)

        # Decode first, then prefill.
        # batch_idx -> req_id
        req_ids = sorted(
            scheduler_output.num_scheduled_tokens.keys(),
            key=lambda k: scheduler_output.num_scheduled_tokens[k],
        )
        num_scheduled_tokens = np.array(
            [scheduler_output.num_scheduled_tokens[i] for i in req_ids], dtype=np.int32
        )

        idx_mapping_list = [
            self.req_states.req_id_to_index[req_id] for req_id in req_ids
        ]
        idx_mapping_np = np.array(idx_mapping_list, dtype=np.int32)
        idx_mapping = self.tmp_idx_mapping.copy_to_gpu(idx_mapping_np)

        # Get the number of draft tokens for each request.
        if not scheduler_output.scheduled_spec_decode_tokens:
            # No draft token scheduled (common case).
            total_num_draft_tokens = 0
            total_num_logits = num_reqs
            cu_num_logits_np = np.arange(num_reqs + 1, dtype=np.int32)
            cu_num_logits = torch.arange(
                num_reqs + 1, device=self.device, dtype=torch.int32
            )
            expanded_idx_mapping = idx_mapping
        else:
            draft_tokens = scheduler_output.scheduled_spec_decode_tokens
            num_draft_tokens = np.array(
                [
                    len(draft_tokens[req_id]) if req_id in draft_tokens else 0
                    for req_id in req_ids
                ],
                dtype=np.int32,
            )
            total_num_draft_tokens = int(num_draft_tokens.sum())
            total_num_logits = num_reqs + total_num_draft_tokens

            num_logits = num_draft_tokens + 1
            cu_num_logits_np = np.empty(num_reqs + 1, dtype=np.int32)
            cu_num_logits_np[0] = 0
            np.cumsum(num_logits, out=cu_num_logits_np[1:])
            cu_num_logits = self.tmp_cu_num_logits.copy_to_gpu(cu_num_logits_np)

            expanded_idx_mapping = expand_idx_mapping(
                idx_mapping,
                total_num_logits,
                cu_num_logits,
                max_expand_len=self.num_speculative_steps + 1,
            )

        # Block tables: num_kv_cache_groups x [num_reqs, max_num_blocks]
        block_tables = self.block_tables.gather_block_tables(idx_mapping)

        # Get query_start_loc.
        query_start_loc_np = np.empty(self.max_num_reqs + 1, dtype=np.int32)
        query_start_loc_np[0] = 0
        np.cumsum(num_scheduled_tokens, out=query_start_loc_np[1 : num_reqs + 1])
        # Pad for full CUDA graph mode.
        # Some attention backends like FA3 require query_start_loc to be non-decreasing.
        query_start_loc_np[num_reqs + 1 :] = num_tokens
        self.tmp_query_start_loc.copy_to_gpu(
            query_start_loc_np,
            out=self.input_buffers.query_start_loc,
        )
        query_start_loc_np = query_start_loc_np[: num_reqs + 1]
        query_start_loc_cpu = torch.from_numpy(query_start_loc_np)
        query_start_loc = self.input_buffers.query_start_loc[: num_reqs + 1]

        # Get prefill tokens.
        prepare_prefill_inputs(
            self.input_buffers.input_ids,
            self.req_states.next_prefill_tokens,
            idx_mapping,
            query_start_loc,
            self.req_states.prefill_token_ids.gpu,
            self.req_states.prefill_len.gpu,
            self.req_states.num_computed_tokens.gpu,
        )

        # Prepare positions and seq_lens.
        prepare_pos_seq_lens(
            idx_mapping,
            query_start_loc,
            self.req_states.num_computed_tokens.gpu,
            self.input_buffers.positions,
            self.input_buffers.seq_lens,
        )
        seq_lens = self.input_buffers.seq_lens[:num_reqs]

        # Prepare M-RoPE positions.
        if self.uses_mrope:
            self.mrope_states.prepare_mrope_positions(
                idx_mapping,
                query_start_loc,
                self.req_states.prefill_len.gpu,
                self.req_states.num_computed_tokens.gpu,
            )

        # Some input token ids are directly read from the last sampled tokens
        # and draft tokens. Also, get the logits indices to sample tokens from.
        logits_indices = combine_sampled_and_draft_tokens(
            self.input_buffers.input_ids,
            idx_mapping,
            self.req_states.last_sampled_tokens,
            query_start_loc,
            seq_lens,
            self.req_states.prefill_len.gpu,
            self.req_states.draft_tokens,
            cu_num_logits,
            total_num_logits,
        )

        # Compute slot mappings: [num_kv_cache_groups, num_tokens]
        slot_mappings = self.block_tables.compute_slot_mappings(
            idx_mapping,
            query_start_loc,
            self.input_buffers.positions[:num_tokens],
        )

        # Layer name -> attention metadata.
        attn_metadata = build_attn_metadata(
            attn_metadata_builders=self.attn_metadata_builders,
            num_reqs=num_reqs,
            num_tokens=num_tokens,
            query_start_loc_gpu=query_start_loc,
            query_start_loc_cpu=query_start_loc_cpu,
            seq_lens=self.input_buffers.seq_lens,
            max_seq_len=self.max_model_len,
            block_tables=block_tables,
            slot_mappings=slot_mappings,
            kv_cache_config=self.kv_cache_config,
        )

        input_ids = self.input_buffers.input_ids[:num_tokens_after_padding]
        positions = self.input_buffers.positions[:num_tokens_after_padding]
        mrope_positions = None
        if self.uses_mrope:
            mrope_positions = self.mrope_states.mrope_positions[
                :, :num_tokens_after_padding
            ]
        return InputBatch(
            req_ids=req_ids,
            num_reqs=num_reqs,
            idx_mapping=idx_mapping,
            idx_mapping_np=idx_mapping_np,
            expanded_idx_mapping=expanded_idx_mapping,
            num_scheduled_tokens=num_scheduled_tokens,
            num_tokens=num_tokens,
            num_tokens_after_padding=num_tokens_after_padding,
            num_draft_tokens=total_num_draft_tokens,
            query_start_loc=query_start_loc,
            query_start_loc_np=query_start_loc_np,
            seq_lens=seq_lens,
            input_ids=input_ids,
            positions=positions,
            mrope_positions=mrope_positions,
            inputs_embeds=None,
            attn_metadata=attn_metadata,
            logits_indices=logits_indices,
            cu_num_logits=cu_num_logits,
            cu_num_logits_np=cu_num_logits_np,
        )

    @torch.inference_mode()
    def get_mm_embeddings(
        self,
        scheduled_encoder_inputs: dict[str, list[int]],
        input_batch: InputBatch,
    ) -> tuple[list[torch.Tensor], torch.Tensor]:
        mm_hashes, mm_kwargs = self.encoder_runner.prepare_mm_inputs(
            scheduled_encoder_inputs
        )
        self.encoder_runner.execute_mm_encoder(self.model, mm_hashes, mm_kwargs)
        mm_embeds, is_mm_embed = self.encoder_runner.gather_mm_embeddings(
            input_batch.req_ids,
            input_batch.num_tokens,
            input_batch.num_scheduled_tokens,
            input_batch.query_start_loc_np,
            self.req_states.prefill_len.np[input_batch.idx_mapping_np],
            self.req_states.num_computed_prefill_tokens[input_batch.idx_mapping_np],
        )
        return mm_embeds, is_mm_embed

    def sample(
        self,
        hidden_states: torch.Tensor,
        input_batch: InputBatch,
        grammar_output: GrammarOutput | None,
    ) -> tuple[SamplerOutput, torch.Tensor, torch.Tensor]:
        sample_hidden_states = hidden_states[input_batch.logits_indices]
        sample_pos = input_batch.positions[input_batch.logits_indices]
        logits = self.model.compute_logits(sample_hidden_states)
        if grammar_output is not None:
            # Apply grammar bitmask to the logits in-place.
            self.structured_outputs_worker.apply_grammar_bitmask(
                logits,
                input_batch,
                grammar_output.structured_output_request_ids,
                grammar_output.grammar_bitmask,
            )

        # Sample tokens and compute logprobs (if needed).
        sampler_output = self.sampler(
            logits,
            input_batch.expanded_idx_mapping,
            input_batch.idx_mapping_np,
            sample_pos,
        )

        if input_batch.num_draft_tokens == 0:
            # No draft tokens (common case).
            num_sampled = torch.ones(
                input_batch.num_reqs, dtype=torch.int32, device=self.device
            )
        else:
            # Rejection sampling for spec decoding.
            input_ids = input_batch.input_ids[input_batch.logits_indices]
            sampled_tokens, num_sampled = rejection_sample(
                sampler_output.sampled_token_ids,
                input_ids,
                input_batch.cu_num_logits,
                self.num_speculative_steps,
            )
            sampler_output.sampled_token_ids = sampled_tokens

        # Get the number of sampled and rejected tokens.
        # For chunked prefills, num_sampled and num_rejected are both 0.
        num_sampled, num_rejected = get_num_sampled_and_rejected(
            num_sampled,
            input_batch.seq_lens,
            input_batch.cu_num_logits,
            input_batch.idx_mapping,
            self.req_states.prefill_len.gpu,
        )
        return sampler_output, num_sampled, num_rejected

    def postprocess(
        self,
        input_batch: InputBatch,
        sampled_tokens: torch.Tensor,
        num_sampled: torch.Tensor,
        num_rejected: torch.Tensor,
    ) -> None:
        # Update the number of computed tokens.
        post_update(
            input_batch.idx_mapping,
            self.req_states.num_computed_tokens.gpu,
            self.req_states.last_sampled_tokens,
            self.sampler.penalties_state.output_bin_counts,
            sampled_tokens,
            num_sampled,
            num_rejected,
            input_batch.query_start_loc,
        )

        # Update the number of computed prefill tokens.
        idx_mapping_np = input_batch.idx_mapping_np
        computed_prefill = self.req_states.num_computed_prefill_tokens
        # TODO(woosuk): Simplify this.
        computed_prefill[idx_mapping_np] = np.minimum(
            computed_prefill[idx_mapping_np] + input_batch.num_scheduled_tokens,
            self.req_states.prefill_len.np[idx_mapping_np],
        )

    @torch.inference_mode()
    def propose_draft(
        self,
        input_batch: InputBatch,
        last_hidden_states: torch.Tensor,
        aux_hidden_states: list[torch.Tensor] | None,
        num_sampled: torch.Tensor,
        num_rejected: torch.Tensor,
    ) -> torch.Tensor:
        assert self.speculator is not None
        draft_tokens = self.speculator.propose(
            input_batch,
            last_hidden_states,
            aux_hidden_states,
            num_sampled,
            num_rejected,
            self.req_states.last_sampled_tokens,
            self.req_states.next_prefill_tokens,
            self.sampler.sampling_states.temperature.gpu,
            self.sampler.sampling_states.seeds.gpu,
        )
        return draft_tokens

    @torch.inference_mode()
    def execute_model(
        self,
        scheduler_output: SchedulerOutput,
        intermediate_tensors: Any | None = None,
        dummy_run: bool = False,
        skip_attn_for_dummy_run: bool = False,
    ) -> ModelRunnerOutput | None:
        assert intermediate_tensors is None
        if not dummy_run:
            # Update the request states.
            self.finish_requests(scheduler_output)
            self.free_states(scheduler_output)
            self.add_requests(scheduler_output)
            self.update_requests(scheduler_output)
            self.block_tables.apply_staged_writes()
            if scheduler_output.total_num_scheduled_tokens == 0:
                # No need to run the model.
                empty_output = self.kv_connector.no_forward(scheduler_output)
                return empty_output

        # Get the CUDA graph size. None means no CUDA graph is used.
        cudagraph_size = self.cudagraph_manager.get_cudagraph_size(
            scheduler_output.total_num_scheduled_tokens,
            scheduler_output.num_scheduled_tokens.values(),
        )
        use_cudagraph, num_tokens_after_padding, num_tokens_across_dp = (
            get_cudagraph_and_dp_padding(
                scheduler_output.total_num_scheduled_tokens,
                cudagraph_size,
                self.parallel_config.data_parallel_size,
                self.parallel_config.data_parallel_rank,
            )
        )
        if num_tokens_after_padding == 0:
            # All DP ranks have zero tokens to run.
            empty_output = self.kv_connector.no_forward(scheduler_output)
            return empty_output

        if not dummy_run:
            # Common case.
            # Prepare all the inputs and copy to the input buffers.
            input_batch = self.prepare_inputs(
                scheduler_output,
                num_tokens_after_padding,
            )
            if self.lora_config:
                # Activate LoRA adapters.
                lora_inputs = self.req_states.make_lora_inputs(
                    input_batch.req_ids,
                    input_batch.idx_mapping_np,
                    input_batch.num_scheduled_tokens,
                )
                self._set_active_loras(*lora_inputs)

            if self.supports_mm_inputs:
                # Execute the multimodal encoder.
                mm_embeds, is_mm_embed = self.get_mm_embeddings(
                    scheduler_output.scheduled_encoder_inputs, input_batch
                )
                inputs_embeds = self.encoder_runner.get_inputs_embeds(
                    self.model, input_batch.input_ids, mm_embeds, is_mm_embed
                )
                input_batch.inputs_embeds = inputs_embeds[
                    : input_batch.num_tokens_after_padding
                ]
        else:
            # No actual tokens to run. A dummy run for DP or memory profiling.
            num_reqs = min(num_tokens_after_padding, self.max_num_reqs)
            input_batch = InputBatch.make_dummy(
                num_reqs=num_reqs,
                num_tokens=num_tokens_after_padding,
                input_buffers=self.input_buffers,
                device=self.device,
            )
            if self.uses_mrope:
                input_batch.mrope_positions = self.mrope_states.mrope_positions[
                    :, :num_tokens_after_padding
                ]
            if not skip_attn_for_dummy_run:
                self.prepare_dummy_attn_metadata(input_batch)
            # FIXME(woosuk): Fix warmup for LoRA.

        # Run model.
        if use_cudagraph:
            # Run CUDA graph.
            # NOTE(woosuk): Here, we don't need to pass the input tensors,
            # because they are already copied to the CUDA graph input buffers.
            self.kv_connector.pre_forward(scheduler_output)
            hidden_states = self.cudagraph_manager.run(
                input_batch.num_tokens_after_padding
            )
        else:
            # Run PyTorch model in eager mode.
            positions = input_batch.positions
            if self.uses_mrope:
                assert input_batch.mrope_positions is not None
                positions = input_batch.mrope_positions
            with set_forward_context(
                input_batch.attn_metadata,
                self.vllm_config,
                num_tokens=input_batch.num_tokens_after_padding,
                # TODO(woosuk): Support piecewise CUDA graph.
                cudagraph_runtime_mode=CUDAGraphMode.NONE,
                num_tokens_across_dp=num_tokens_across_dp,
            ):
                self.kv_connector.pre_forward(scheduler_output)
                hidden_states = self.model(
                    input_ids=input_batch.input_ids,
                    positions=positions,
                    inputs_embeds=input_batch.inputs_embeds,
                )

        kv_connector_output = self.kv_connector.post_forward(scheduler_output)
        self.execute_model_state = hidden_states, input_batch, kv_connector_output
        return None

    @torch.inference_mode()
    def sample_tokens(
        self,
        grammar_output: GrammarOutput | None,
    ) -> AsyncOutput | ModelRunnerOutput:
        assert self.execute_model_state is not None
        hidden_states, input_batch, kv_connector_output = self.execute_model_state
        self.execute_model_state = None  # type: ignore

        sampler_output, num_sampled, num_rejected = self.sample(
            hidden_states, input_batch, grammar_output
        )
        prompt_logprobs_dict = self.prompt_logprobs_worker.compute_prompt_logprobs(
            self.model.compute_logits,
            hidden_states,
            input_batch,
            self.req_states.prefill_token_ids.gpu,
            self.req_states.num_computed_tokens.gpu,
            self.req_states.prompt_len,
            self.req_states.prefill_len.np,
            self.req_states.num_computed_prefill_tokens,
        )

        # Prepare the model runner output.
        model_runner_output = ModelRunnerOutput(
            req_ids=input_batch.req_ids,
            # NOTE(woosuk): req_id_to_index is unused in this model runner.
            # Only for compatibility with the existing model runner and scheduler.
            req_id_to_index={req_id: i for i, req_id in enumerate(input_batch.req_ids)},
            sampled_token_ids=None,  # type: ignore
            prompt_logprobs_dict=prompt_logprobs_dict,  # type: ignore[arg-type]
            kv_connector_output=kv_connector_output,
        )
        async_output = AsyncOutput(
            model_runner_output=model_runner_output,
            sampler_output=sampler_output,
            num_sampled_tokens=num_sampled,
            copy_stream=self.output_copy_stream,
            copy_event=self.output_copy_event,
        )

        # Postprocess results and update request states.
        # NOTE: This is intentionally done after creating the AsyncOutput,
        # ensuring that `copy_event` is recorded before calling postprocess.
        # This sequencing may slightly reduce latency as async D2H copy does not
        # need to wait for the postprocess to finish.
        self.postprocess(
            input_batch, sampler_output.sampled_token_ids, num_sampled, num_rejected
        )
        if self.do_spec_decode:
            draft_tokens = self.propose_draft(
                input_batch,
                hidden_states,
                None,  # aux_hidden_states
                num_sampled,
                num_rejected,
            )
            self.req_states.draft_tokens[input_batch.idx_mapping] = draft_tokens

        if self.use_async_scheduling:
            return async_output
        return async_output.get_output()

cache_config instance-attribute

cache_config = cache_config

compilation_config instance-attribute

compilation_config = compilation_config

cudagraph_manager instance-attribute

cudagraph_manager = CudaGraphManager(
    vllm_config, uses_mrope, device
)

device instance-attribute

device = device

do_spec_decode instance-attribute

do_spec_decode = True

dtype instance-attribute

dtype = dtype

encoder_runner instance-attribute

encoder_runner = EncoderRunner(
    max_num_tokens=max_num_tokens,
    hidden_size=inputs_embeds_size,
    dtype=dtype,
    device=device,
)

input_buffers instance-attribute

input_buffers = InputBuffers(
    max_num_reqs=max_num_reqs,
    max_num_tokens=max_num_tokens,
    device=device,
)

input_prep_event instance-attribute

input_prep_event = Event()

inputs_embeds_size instance-attribute

inputs_embeds_size = get_inputs_embeds_size()

is_pooling_model instance-attribute

is_pooling_model = False

kv_cache_dtype instance-attribute

kv_cache_dtype = dtype

kv_connector instance-attribute

load_config instance-attribute

load_config = load_config

lora_config instance-attribute

lora_config = lora_config

max_model_len instance-attribute

max_model_len = max_model_len

max_num_reqs instance-attribute

max_num_reqs = max_num_seqs

max_num_tokens instance-attribute

max_num_tokens = max_num_batched_tokens

mm_registry instance-attribute

mm_registry = MULTIMODAL_REGISTRY

model_config instance-attribute

model_config = model_config

mrope_states instance-attribute

mrope_states = MRopeState(
    max_num_reqs=max_num_reqs,
    max_num_tokens=max_num_tokens,
    max_model_len=max_model_len,
    device=device,
)

num_speculative_steps instance-attribute

num_speculative_steps = num_speculative_tokens

observability_config instance-attribute

observability_config = observability_config

output_copy_event instance-attribute

output_copy_event = Event()

output_copy_stream instance-attribute

output_copy_stream = Stream(device)

parallel_config instance-attribute

parallel_config = parallel_config

prompt_logprobs_worker instance-attribute

prompt_logprobs_worker = PromptLogprobsWorker(max_num_reqs)

req_states instance-attribute

req_states = RequestState(
    max_num_reqs=max_num_reqs,
    max_model_len=max_model_len,
    max_num_batched_tokens=max_num_tokens,
    num_speculative_steps=num_speculative_steps,
    vocab_size=vocab_size,
    device=device,
)

sampler instance-attribute

sampler = Sampler(
    max_num_reqs=max_num_reqs,
    vocab_size=vocab_size,
    device=device,
    logprobs_mode=logprobs_mode,
)

scheduler_config instance-attribute

scheduler_config = scheduler_config

speculative_config instance-attribute

speculative_config = speculative_config

speculator instance-attribute

speculator = init_speculator(vllm_config, device)

structured_outputs_event instance-attribute

structured_outputs_event = Event()

structured_outputs_worker instance-attribute

structured_outputs_worker = StructuredOutputsWorker(
    max_num_logits=max_num_reqs
    * (num_speculative_steps + 1),
    vocab_size=vocab_size,
)

supports_mm_inputs instance-attribute

supports_mm_inputs = supports_multimodal_inputs(
    model_config
)

tmp_cu_num_logits instance-attribute

tmp_cu_num_logits = UvaBufferPool(max_num_reqs + 1, int32)

tmp_idx_mapping instance-attribute

tmp_idx_mapping = UvaBufferPool(max_num_reqs, int32)

tmp_query_start_loc instance-attribute

tmp_query_start_loc = UvaBufferPool(max_num_reqs + 1, int32)

use_async_scheduling instance-attribute

use_async_scheduling = async_scheduling

uses_mrope instance-attribute

uses_mrope = uses_mrope

vllm_config instance-attribute

vllm_config = vllm_config

vocab_size instance-attribute

vocab_size = get_vocab_size()

__init__

__init__(vllm_config: VllmConfig, device: device)
Source code in vllm/v1/worker/gpu/model_runner.py
def __init__(
    self,
    vllm_config: VllmConfig,
    device: torch.device,
):
    self.vllm_config = vllm_config
    self.model_config = vllm_config.model_config
    self.cache_config = vllm_config.cache_config
    self.compilation_config = vllm_config.compilation_config
    self.lora_config = vllm_config.lora_config
    self.load_config = vllm_config.load_config
    self.parallel_config = vllm_config.parallel_config
    self.scheduler_config = vllm_config.scheduler_config
    self.speculative_config = vllm_config.speculative_config
    self.observability_config = vllm_config.observability_config

    self.device = device
    self.dtype = self.model_config.dtype
    self.kv_cache_dtype = self.dtype
    if self.cache_config.cache_dtype != "auto":
        # Quantized KV cache.
        self.kv_cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[
            self.cache_config.cache_dtype
        ]
    self.is_pooling_model = False

    self.vocab_size = self.model_config.get_vocab_size()
    self.max_model_len = self.model_config.max_model_len
    self.max_num_tokens = self.scheduler_config.max_num_batched_tokens
    self.max_num_reqs = self.scheduler_config.max_num_seqs
    self.inputs_embeds_size = self.model_config.get_inputs_embeds_size()

    # Multimodal
    self.mm_registry = MULTIMODAL_REGISTRY
    self.supports_mm_inputs = self.mm_registry.supports_multimodal_inputs(
        self.model_config
    )
    if self.supports_mm_inputs:
        self.encoder_runner = EncoderRunner(
            max_num_tokens=self.max_num_tokens,
            hidden_size=self.inputs_embeds_size,
            dtype=self.dtype,
            device=self.device,
        )
    self.uses_mrope = self.model_config.uses_mrope
    if self.uses_mrope:
        self.mrope_states = MRopeState(
            max_num_reqs=self.max_num_reqs,
            max_num_tokens=self.max_num_tokens,
            max_model_len=self.max_model_len,
            device=self.device,
        )

    self.use_async_scheduling = self.scheduler_config.async_scheduling
    self.output_copy_stream = torch.cuda.Stream(self.device)
    self.output_copy_event = torch.cuda.Event()
    if self.use_async_scheduling:
        self.input_prep_event = torch.cuda.Event()
        self.structured_outputs_event = torch.cuda.Event()
    else:
        self.input_prep_event = None
        self.structured_outputs_event = None

    if self.speculative_config is not None:
        self.do_spec_decode = True
        self.num_speculative_steps = self.speculative_config.num_speculative_tokens
        self.speculator = init_speculator(self.vllm_config, self.device)
    else:
        self.do_spec_decode = False
        self.num_speculative_steps = 0
        self.speculator = None

    self.req_states = RequestState(
        max_num_reqs=self.max_num_reqs,
        max_model_len=self.max_model_len,
        max_num_batched_tokens=self.max_num_tokens,
        num_speculative_steps=self.num_speculative_steps,
        vocab_size=self.vocab_size,
        device=self.device,
    )
    self.input_buffers = InputBuffers(
        max_num_reqs=self.max_num_reqs,
        max_num_tokens=self.max_num_tokens,
        device=self.device,
    )
    self.sampler = Sampler(
        max_num_reqs=self.max_num_reqs,
        vocab_size=self.vocab_size,
        device=self.device,
        logprobs_mode=self.model_config.logprobs_mode,
    )
    self.prompt_logprobs_worker = PromptLogprobsWorker(self.max_num_reqs)

    # CUDA graphs.
    self.cudagraph_manager = CudaGraphManager(
        self.vllm_config, self.uses_mrope, self.device
    )
    # Structured outputs worker.
    self.structured_outputs_worker = StructuredOutputsWorker(
        max_num_logits=self.max_num_reqs * (self.num_speculative_steps + 1),
        vocab_size=self.vocab_size,
    )

    # Buffers for CPU-to-GPU copies.
    self.tmp_idx_mapping = UvaBufferPool(self.max_num_reqs, torch.int32)
    self.tmp_cu_num_logits = UvaBufferPool(self.max_num_reqs + 1, torch.int32)
    self.tmp_query_start_loc = UvaBufferPool(self.max_num_reqs + 1, torch.int32)

    self.kv_connector: KVConnector = NO_OP_KV_CONNECTOR

_dummy_run

_dummy_run(
    num_tokens: int, *args, skip_attn: bool = True, **kwargs
) -> tuple[Tensor, Tensor]
Source code in vllm/v1/worker/gpu/model_runner.py
@torch.inference_mode()
def _dummy_run(
    self,
    num_tokens: int,
    *args,
    skip_attn: bool = True,
    **kwargs,
) -> tuple[torch.Tensor, torch.Tensor]:
    # Create a dummy scheduler output.
    num_reqs = min(num_tokens, self.max_num_reqs)
    num_tokens_per_request = [num_tokens // num_reqs] * num_reqs
    num_tokens_per_request[-1] += num_tokens % num_reqs
    assert sum(num_tokens_per_request) == num_tokens
    num_scheduled_tokens = {
        f"_dummy_req_{i}": n for i, n in enumerate(num_tokens_per_request)
    }
    dummy_scheduler_output = SchedulerOutput.make_empty()
    dummy_scheduler_output.total_num_scheduled_tokens = num_tokens
    dummy_scheduler_output.num_scheduled_tokens = num_scheduled_tokens

    # Disable any use of KVConnector for dummy runs.
    self.kv_connector.set_disabled(True)

    # Execute the model.
    self.execute_model(
        dummy_scheduler_output, dummy_run=True, skip_attn_for_dummy_run=skip_attn
    )
    self.kv_connector.set_disabled(False)
    assert self.execute_model_state is not None
    hidden_states, input_batch, _ = self.execute_model_state
    sample_hidden_states = hidden_states[input_batch.logits_indices]
    return hidden_states, sample_hidden_states

_dummy_sampler_run

_dummy_sampler_run(hidden_states: Tensor) -> None
Source code in vllm/v1/worker/gpu/model_runner.py
@torch.inference_mode()
def _dummy_sampler_run(
    self,
    hidden_states: torch.Tensor,
) -> None:
    num_reqs = hidden_states.shape[0]
    logits = self.model.compute_logits(hidden_states)
    idx_mapping = torch.arange(num_reqs, dtype=torch.int32, device=self.device)
    idx_mapping_np = np.arange(num_reqs, dtype=np.int32)
    pos = torch.zeros(num_reqs, dtype=torch.int64, device=self.device)
    # NOTE(woosuk): During the initial memory profiling, the sampler may skip
    # top_k, top_p, and logprobs, using less GPU memory than what is possible
    # during actual execution.
    self.sampler(logits, idx_mapping, idx_mapping_np, pos)

_get_num_input_tokens

_get_num_input_tokens(num_scheduled_tokens: int) -> int
Source code in vllm/v1/worker/gpu/model_runner.py
def _get_num_input_tokens(self, num_scheduled_tokens: int) -> int:
    # SP is not supported yet.
    return num_scheduled_tokens

add_requests

add_requests(scheduler_output: SchedulerOutput) -> None
Source code in vllm/v1/worker/gpu/model_runner.py
def add_requests(self, scheduler_output: SchedulerOutput) -> None:
    for new_req_data in scheduler_output.scheduled_new_reqs:
        assert new_req_data.prompt_token_ids is not None
        assert new_req_data.prefill_token_ids is not None
        assert new_req_data.sampling_params is not None
        req_id = new_req_data.req_id
        prompt_len = len(new_req_data.prompt_token_ids)
        self.req_states.add_request(
            req_id=req_id,
            prompt_len=prompt_len,
            prefill_token_ids=new_req_data.prefill_token_ids,
            num_computed_tokens=new_req_data.num_computed_tokens,
            lora_request=new_req_data.lora_request,
        )
        req_index = self.req_states.req_id_to_index[req_id]

        if self.supports_mm_inputs:
            self.encoder_runner.add_request(req_id, new_req_data.mm_features)

        # Pre-compute M-RoPE positions for prefill.
        if self.uses_mrope:
            self.mrope_states.init_prefill_mrope_positions(
                req_index,
                self.model,  # type: ignore
                new_req_data.prefill_token_ids,
                mm_features=new_req_data.mm_features,
            )

        self.block_tables.append_block_ids(
            req_index, new_req_data.block_ids, overwrite=True
        )
        self.sampler.add_request(
            req_index, prompt_len, new_req_data.sampling_params
        )
        self.prompt_logprobs_worker.add_request(
            req_id, req_index, new_req_data.sampling_params
        )

    if scheduler_output.scheduled_new_reqs:
        self.req_states.apply_staged_writes()
        self.sampler.apply_staged_writes(
            self.req_states.prefill_token_ids.gpu,
            self.req_states.prefill_len.np,
            self.req_states.prompt_len,
        )
        if self.uses_mrope:
            self.mrope_states.apply_staged_writes()

capture_model

capture_model() -> int
Source code in vllm/v1/worker/gpu/model_runner.py
@torch.inference_mode()
def capture_model(self) -> int:
    if not self.cudagraph_manager.needs_capture():
        logger.warning(
            "Skipping CUDA graph capture. To turn on CUDA graph capture, "
            "ensure `cudagraph_mode` was not manually set to `NONE`"
        )
        return 0

    start_time = time.perf_counter()
    gc.collect()
    torch.cuda.empty_cache()
    start_free_gpu_memory = torch.cuda.mem_get_info()[0]

    with self.maybe_setup_dummy_loras(self.lora_config):
        mrope_positions = None
        if self.uses_mrope:
            mrope_positions = self.mrope_states.mrope_positions
        inputs_embeds = None
        if self.supports_mm_inputs:
            inputs_embeds = self.encoder_runner.inputs_embeds
        self.cudagraph_manager.capture(
            model=self.model,
            input_buffers=self.input_buffers,
            mrope_positions=mrope_positions,
            inputs_embeds=inputs_embeds,
            block_tables=self.block_tables,
            attn_metadata_builders=self.attn_metadata_builders,
            kv_cache_config=self.kv_cache_config,
        )
        if self.do_spec_decode:
            self.speculator.capture_model()

    end_time = time.perf_counter()
    end_free_gpu_memory = torch.cuda.mem_get_info()[0]
    elapsed_time = end_time - start_time
    cuda_graph_size = start_free_gpu_memory - end_free_gpu_memory
    # This usually takes 5~20 seconds.
    logger.info(
        "Graph capturing finished in %.0f secs, took %.2f GiB",
        elapsed_time,
        cuda_graph_size / (1 << 30),
    )
    return cuda_graph_size

execute_model

execute_model(
    scheduler_output: SchedulerOutput,
    intermediate_tensors: Any | None = None,
    dummy_run: bool = False,
    skip_attn_for_dummy_run: bool = False,
) -> ModelRunnerOutput | None
Source code in vllm/v1/worker/gpu/model_runner.py
@torch.inference_mode()
def execute_model(
    self,
    scheduler_output: SchedulerOutput,
    intermediate_tensors: Any | None = None,
    dummy_run: bool = False,
    skip_attn_for_dummy_run: bool = False,
) -> ModelRunnerOutput | None:
    assert intermediate_tensors is None
    if not dummy_run:
        # Update the request states.
        self.finish_requests(scheduler_output)
        self.free_states(scheduler_output)
        self.add_requests(scheduler_output)
        self.update_requests(scheduler_output)
        self.block_tables.apply_staged_writes()
        if scheduler_output.total_num_scheduled_tokens == 0:
            # No need to run the model.
            empty_output = self.kv_connector.no_forward(scheduler_output)
            return empty_output

    # Get the CUDA graph size. None means no CUDA graph is used.
    cudagraph_size = self.cudagraph_manager.get_cudagraph_size(
        scheduler_output.total_num_scheduled_tokens,
        scheduler_output.num_scheduled_tokens.values(),
    )
    use_cudagraph, num_tokens_after_padding, num_tokens_across_dp = (
        get_cudagraph_and_dp_padding(
            scheduler_output.total_num_scheduled_tokens,
            cudagraph_size,
            self.parallel_config.data_parallel_size,
            self.parallel_config.data_parallel_rank,
        )
    )
    if num_tokens_after_padding == 0:
        # All DP ranks have zero tokens to run.
        empty_output = self.kv_connector.no_forward(scheduler_output)
        return empty_output

    if not dummy_run:
        # Common case.
        # Prepare all the inputs and copy to the input buffers.
        input_batch = self.prepare_inputs(
            scheduler_output,
            num_tokens_after_padding,
        )
        if self.lora_config:
            # Activate LoRA adapters.
            lora_inputs = self.req_states.make_lora_inputs(
                input_batch.req_ids,
                input_batch.idx_mapping_np,
                input_batch.num_scheduled_tokens,
            )
            self._set_active_loras(*lora_inputs)

        if self.supports_mm_inputs:
            # Execute the multimodal encoder.
            mm_embeds, is_mm_embed = self.get_mm_embeddings(
                scheduler_output.scheduled_encoder_inputs, input_batch
            )
            inputs_embeds = self.encoder_runner.get_inputs_embeds(
                self.model, input_batch.input_ids, mm_embeds, is_mm_embed
            )
            input_batch.inputs_embeds = inputs_embeds[
                : input_batch.num_tokens_after_padding
            ]
    else:
        # No actual tokens to run. A dummy run for DP or memory profiling.
        num_reqs = min(num_tokens_after_padding, self.max_num_reqs)
        input_batch = InputBatch.make_dummy(
            num_reqs=num_reqs,
            num_tokens=num_tokens_after_padding,
            input_buffers=self.input_buffers,
            device=self.device,
        )
        if self.uses_mrope:
            input_batch.mrope_positions = self.mrope_states.mrope_positions[
                :, :num_tokens_after_padding
            ]
        if not skip_attn_for_dummy_run:
            self.prepare_dummy_attn_metadata(input_batch)
        # FIXME(woosuk): Fix warmup for LoRA.

    # Run model.
    if use_cudagraph:
        # Run CUDA graph.
        # NOTE(woosuk): Here, we don't need to pass the input tensors,
        # because they are already copied to the CUDA graph input buffers.
        self.kv_connector.pre_forward(scheduler_output)
        hidden_states = self.cudagraph_manager.run(
            input_batch.num_tokens_after_padding
        )
    else:
        # Run PyTorch model in eager mode.
        positions = input_batch.positions
        if self.uses_mrope:
            assert input_batch.mrope_positions is not None
            positions = input_batch.mrope_positions
        with set_forward_context(
            input_batch.attn_metadata,
            self.vllm_config,
            num_tokens=input_batch.num_tokens_after_padding,
            # TODO(woosuk): Support piecewise CUDA graph.
            cudagraph_runtime_mode=CUDAGraphMode.NONE,
            num_tokens_across_dp=num_tokens_across_dp,
        ):
            self.kv_connector.pre_forward(scheduler_output)
            hidden_states = self.model(
                input_ids=input_batch.input_ids,
                positions=positions,
                inputs_embeds=input_batch.inputs_embeds,
            )

    kv_connector_output = self.kv_connector.post_forward(scheduler_output)
    self.execute_model_state = hidden_states, input_batch, kv_connector_output
    return None

finish_requests

finish_requests(scheduler_output: SchedulerOutput) -> None
Source code in vllm/v1/worker/gpu/model_runner.py
def finish_requests(self, scheduler_output: SchedulerOutput) -> None:
    if scheduler_output.preempted_req_ids is not None:
        for req_id in scheduler_output.preempted_req_ids:
            self.req_states.remove_request(req_id)
            if self.supports_mm_inputs:
                self.encoder_runner.remove_request(req_id)
            self.prompt_logprobs_worker.remove_request(req_id)
    for req_id in scheduler_output.finished_req_ids:
        self.req_states.remove_request(req_id)
        if self.supports_mm_inputs:
            self.encoder_runner.remove_request(req_id)
        self.prompt_logprobs_worker.remove_request(req_id)

free_states

free_states(scheduler_output: SchedulerOutput) -> None
Source code in vllm/v1/worker/gpu/model_runner.py
def free_states(self, scheduler_output: SchedulerOutput) -> None:
    if self.supports_mm_inputs:
        for mm_hash in scheduler_output.free_encoder_mm_hashes:
            self.encoder_runner.free_encoder_cache(mm_hash)

get_kv_cache_spec

get_kv_cache_spec()
Source code in vllm/v1/worker/gpu/model_runner.py
def get_kv_cache_spec(self):
    return get_kv_cache_spec(self.vllm_config)

get_mm_embeddings

get_mm_embeddings(
    scheduled_encoder_inputs: dict[str, list[int]],
    input_batch: InputBatch,
) -> tuple[list[Tensor], Tensor]
Source code in vllm/v1/worker/gpu/model_runner.py
@torch.inference_mode()
def get_mm_embeddings(
    self,
    scheduled_encoder_inputs: dict[str, list[int]],
    input_batch: InputBatch,
) -> tuple[list[torch.Tensor], torch.Tensor]:
    mm_hashes, mm_kwargs = self.encoder_runner.prepare_mm_inputs(
        scheduled_encoder_inputs
    )
    self.encoder_runner.execute_mm_encoder(self.model, mm_hashes, mm_kwargs)
    mm_embeds, is_mm_embed = self.encoder_runner.gather_mm_embeddings(
        input_batch.req_ids,
        input_batch.num_tokens,
        input_batch.num_scheduled_tokens,
        input_batch.query_start_loc_np,
        self.req_states.prefill_len.np[input_batch.idx_mapping_np],
        self.req_states.num_computed_prefill_tokens[input_batch.idx_mapping_np],
    )
    return mm_embeds, is_mm_embed

get_model

get_model() -> Module
Source code in vllm/v1/worker/gpu/model_runner.py
def get_model(self) -> nn.Module:
    return self.model

get_supported_tasks

get_supported_tasks() -> tuple[str]
Source code in vllm/v1/worker/gpu/model_runner.py
def get_supported_tasks(self) -> tuple[str]:
    return ("generate",)

initialize_kv_cache

initialize_kv_cache(kv_cache_config: KVCacheConfig) -> None
Source code in vllm/v1/worker/gpu/model_runner.py
def initialize_kv_cache(self, kv_cache_config: KVCacheConfig) -> None:
    kv_cache_config = deepcopy(kv_cache_config)
    self.kv_cache_config = kv_cache_config
    block_sizes = [
        kv_cache_group.kv_cache_spec.block_size
        for kv_cache_group in kv_cache_config.kv_cache_groups
    ]

    self.block_tables = BlockTables(
        block_sizes=block_sizes,
        max_num_reqs=self.max_num_reqs,
        max_num_batched_tokens=self.max_num_tokens,
        max_model_len=self.max_model_len,
        device=self.device,
    )

    self.attn_backends, self.attn_metadata_builders = init_attn_backend(
        self.kv_cache_config,
        self.vllm_config,
        self.device,
    )
    if self.do_spec_decode:
        # HACK(woosuk)
        self.speculator.set_attn(
            self.kv_cache_config,
            self.attn_metadata_builders,
            self.block_tables,
        )

    self.kv_caches: list[torch.Tensor] = []
    kv_caches_dict = init_kv_cache(
        self.kv_caches,
        self.compilation_config.static_forward_context,
        self.kv_cache_config,
        self.attn_backends,
        self.device,
    )
    self.kv_connector = get_kv_connector(self.vllm_config, kv_caches_dict)

    # Attention groups are not supported.
    self.attn_groups = []  # type: ignore

load_model

load_model(*args, **kwargs) -> None
Source code in vllm/v1/worker/gpu/model_runner.py
def load_model(self, *args, **kwargs) -> None:
    time_before_load = time.perf_counter()
    with DeviceMemoryProfiler() as m:
        model_loader = get_model_loader(self.vllm_config.load_config)
        logger.info("Loading model from scratch...")

        self.model = model_loader.load_model(
            vllm_config=self.vllm_config,
            model_config=self.vllm_config.model_config,
        )
        if self.lora_config:
            self.model = self.load_lora_model(
                self.model,
                self.vllm_config,
                self.device,
            )
        if self.do_spec_decode:
            self.speculator.load_model(self.model)
    time_after_load = time.perf_counter()

    self.model_memory_usage = m.consumed_memory
    logger.info(
        "Model loading took %s GiB and %.6f seconds",
        format_gib(m.consumed_memory),
        time_after_load - time_before_load,
    )

    prepare_communication_buffer_for_model(self.model)
    if self.do_spec_decode:
        speculator_model = getattr(self.speculator, "model", None)
        if speculator_model is not None:
            prepare_communication_buffer_for_model(speculator_model)

postprocess

postprocess(
    input_batch: InputBatch,
    sampled_tokens: Tensor,
    num_sampled: Tensor,
    num_rejected: Tensor,
) -> None
Source code in vllm/v1/worker/gpu/model_runner.py
def postprocess(
    self,
    input_batch: InputBatch,
    sampled_tokens: torch.Tensor,
    num_sampled: torch.Tensor,
    num_rejected: torch.Tensor,
) -> None:
    # Update the number of computed tokens.
    post_update(
        input_batch.idx_mapping,
        self.req_states.num_computed_tokens.gpu,
        self.req_states.last_sampled_tokens,
        self.sampler.penalties_state.output_bin_counts,
        sampled_tokens,
        num_sampled,
        num_rejected,
        input_batch.query_start_loc,
    )

    # Update the number of computed prefill tokens.
    idx_mapping_np = input_batch.idx_mapping_np
    computed_prefill = self.req_states.num_computed_prefill_tokens
    # TODO(woosuk): Simplify this.
    computed_prefill[idx_mapping_np] = np.minimum(
        computed_prefill[idx_mapping_np] + input_batch.num_scheduled_tokens,
        self.req_states.prefill_len.np[idx_mapping_np],
    )

prepare_dummy_attn_metadata

prepare_dummy_attn_metadata(
    input_batch: InputBatch,
) -> None
Source code in vllm/v1/worker/gpu/model_runner.py
def prepare_dummy_attn_metadata(self, input_batch: InputBatch) -> None:
    block_tables = self.block_tables.get_dummy_block_tables(input_batch.num_reqs)
    slot_mappings = self.block_tables.get_dummy_slot_mappings(
        input_batch.num_tokens
    )
    attn_metadata = build_attn_metadata(
        attn_metadata_builders=self.attn_metadata_builders,
        num_reqs=input_batch.num_reqs,
        num_tokens=input_batch.num_tokens,
        query_start_loc_gpu=input_batch.query_start_loc,
        query_start_loc_cpu=torch.from_numpy(input_batch.query_start_loc_np),
        seq_lens=input_batch.seq_lens,
        max_seq_len=self.max_model_len,
        block_tables=block_tables,
        slot_mappings=slot_mappings,
        kv_cache_config=self.kv_cache_config,
    )
    input_batch.attn_metadata = attn_metadata

prepare_inputs

prepare_inputs(
    scheduler_output: SchedulerOutput,
    num_tokens_after_padding: int,
) -> InputBatch
Source code in vllm/v1/worker/gpu/model_runner.py
def prepare_inputs(
    self,
    scheduler_output: SchedulerOutput,
    num_tokens_after_padding: int,
) -> InputBatch:
    num_tokens = scheduler_output.total_num_scheduled_tokens
    assert num_tokens > 0
    num_reqs = len(scheduler_output.num_scheduled_tokens)

    # Decode first, then prefill.
    # batch_idx -> req_id
    req_ids = sorted(
        scheduler_output.num_scheduled_tokens.keys(),
        key=lambda k: scheduler_output.num_scheduled_tokens[k],
    )
    num_scheduled_tokens = np.array(
        [scheduler_output.num_scheduled_tokens[i] for i in req_ids], dtype=np.int32
    )

    idx_mapping_list = [
        self.req_states.req_id_to_index[req_id] for req_id in req_ids
    ]
    idx_mapping_np = np.array(idx_mapping_list, dtype=np.int32)
    idx_mapping = self.tmp_idx_mapping.copy_to_gpu(idx_mapping_np)

    # Get the number of draft tokens for each request.
    if not scheduler_output.scheduled_spec_decode_tokens:
        # No draft token scheduled (common case).
        total_num_draft_tokens = 0
        total_num_logits = num_reqs
        cu_num_logits_np = np.arange(num_reqs + 1, dtype=np.int32)
        cu_num_logits = torch.arange(
            num_reqs + 1, device=self.device, dtype=torch.int32
        )
        expanded_idx_mapping = idx_mapping
    else:
        draft_tokens = scheduler_output.scheduled_spec_decode_tokens
        num_draft_tokens = np.array(
            [
                len(draft_tokens[req_id]) if req_id in draft_tokens else 0
                for req_id in req_ids
            ],
            dtype=np.int32,
        )
        total_num_draft_tokens = int(num_draft_tokens.sum())
        total_num_logits = num_reqs + total_num_draft_tokens

        num_logits = num_draft_tokens + 1
        cu_num_logits_np = np.empty(num_reqs + 1, dtype=np.int32)
        cu_num_logits_np[0] = 0
        np.cumsum(num_logits, out=cu_num_logits_np[1:])
        cu_num_logits = self.tmp_cu_num_logits.copy_to_gpu(cu_num_logits_np)

        expanded_idx_mapping = expand_idx_mapping(
            idx_mapping,
            total_num_logits,
            cu_num_logits,
            max_expand_len=self.num_speculative_steps + 1,
        )

    # Block tables: num_kv_cache_groups x [num_reqs, max_num_blocks]
    block_tables = self.block_tables.gather_block_tables(idx_mapping)

    # Get query_start_loc.
    query_start_loc_np = np.empty(self.max_num_reqs + 1, dtype=np.int32)
    query_start_loc_np[0] = 0
    np.cumsum(num_scheduled_tokens, out=query_start_loc_np[1 : num_reqs + 1])
    # Pad for full CUDA graph mode.
    # Some attention backends like FA3 require query_start_loc to be non-decreasing.
    query_start_loc_np[num_reqs + 1 :] = num_tokens
    self.tmp_query_start_loc.copy_to_gpu(
        query_start_loc_np,
        out=self.input_buffers.query_start_loc,
    )
    query_start_loc_np = query_start_loc_np[: num_reqs + 1]
    query_start_loc_cpu = torch.from_numpy(query_start_loc_np)
    query_start_loc = self.input_buffers.query_start_loc[: num_reqs + 1]

    # Get prefill tokens.
    prepare_prefill_inputs(
        self.input_buffers.input_ids,
        self.req_states.next_prefill_tokens,
        idx_mapping,
        query_start_loc,
        self.req_states.prefill_token_ids.gpu,
        self.req_states.prefill_len.gpu,
        self.req_states.num_computed_tokens.gpu,
    )

    # Prepare positions and seq_lens.
    prepare_pos_seq_lens(
        idx_mapping,
        query_start_loc,
        self.req_states.num_computed_tokens.gpu,
        self.input_buffers.positions,
        self.input_buffers.seq_lens,
    )
    seq_lens = self.input_buffers.seq_lens[:num_reqs]

    # Prepare M-RoPE positions.
    if self.uses_mrope:
        self.mrope_states.prepare_mrope_positions(
            idx_mapping,
            query_start_loc,
            self.req_states.prefill_len.gpu,
            self.req_states.num_computed_tokens.gpu,
        )

    # Some input token ids are directly read from the last sampled tokens
    # and draft tokens. Also, get the logits indices to sample tokens from.
    logits_indices = combine_sampled_and_draft_tokens(
        self.input_buffers.input_ids,
        idx_mapping,
        self.req_states.last_sampled_tokens,
        query_start_loc,
        seq_lens,
        self.req_states.prefill_len.gpu,
        self.req_states.draft_tokens,
        cu_num_logits,
        total_num_logits,
    )

    # Compute slot mappings: [num_kv_cache_groups, num_tokens]
    slot_mappings = self.block_tables.compute_slot_mappings(
        idx_mapping,
        query_start_loc,
        self.input_buffers.positions[:num_tokens],
    )

    # Layer name -> attention metadata.
    attn_metadata = build_attn_metadata(
        attn_metadata_builders=self.attn_metadata_builders,
        num_reqs=num_reqs,
        num_tokens=num_tokens,
        query_start_loc_gpu=query_start_loc,
        query_start_loc_cpu=query_start_loc_cpu,
        seq_lens=self.input_buffers.seq_lens,
        max_seq_len=self.max_model_len,
        block_tables=block_tables,
        slot_mappings=slot_mappings,
        kv_cache_config=self.kv_cache_config,
    )

    input_ids = self.input_buffers.input_ids[:num_tokens_after_padding]
    positions = self.input_buffers.positions[:num_tokens_after_padding]
    mrope_positions = None
    if self.uses_mrope:
        mrope_positions = self.mrope_states.mrope_positions[
            :, :num_tokens_after_padding
        ]
    return InputBatch(
        req_ids=req_ids,
        num_reqs=num_reqs,
        idx_mapping=idx_mapping,
        idx_mapping_np=idx_mapping_np,
        expanded_idx_mapping=expanded_idx_mapping,
        num_scheduled_tokens=num_scheduled_tokens,
        num_tokens=num_tokens,
        num_tokens_after_padding=num_tokens_after_padding,
        num_draft_tokens=total_num_draft_tokens,
        query_start_loc=query_start_loc,
        query_start_loc_np=query_start_loc_np,
        seq_lens=seq_lens,
        input_ids=input_ids,
        positions=positions,
        mrope_positions=mrope_positions,
        inputs_embeds=None,
        attn_metadata=attn_metadata,
        logits_indices=logits_indices,
        cu_num_logits=cu_num_logits,
        cu_num_logits_np=cu_num_logits_np,
    )

profile_run

profile_run() -> None
Source code in vllm/v1/worker/gpu/model_runner.py
@torch.inference_mode()
def profile_run(self) -> None:
    hidden_states, sample_hidden_states = self._dummy_run(
        self.max_num_tokens,
        skip_attn=True,
    )
    self._dummy_sampler_run(sample_hidden_states)
    if self.do_spec_decode:
        num_tokens_across_dp = make_num_tokens_across_dp(
            self.parallel_config.data_parallel_size, self.max_num_tokens
        )
        self.speculator.run_model(
            self.max_num_tokens,
            attn_metadata=None,
            num_tokens_across_dp=num_tokens_across_dp,
        )
    torch.cuda.synchronize()
    del hidden_states, sample_hidden_states
    gc.collect()

propose_draft

propose_draft(
    input_batch: InputBatch,
    last_hidden_states: Tensor,
    aux_hidden_states: list[Tensor] | None,
    num_sampled: Tensor,
    num_rejected: Tensor,
) -> Tensor
Source code in vllm/v1/worker/gpu/model_runner.py
@torch.inference_mode()
def propose_draft(
    self,
    input_batch: InputBatch,
    last_hidden_states: torch.Tensor,
    aux_hidden_states: list[torch.Tensor] | None,
    num_sampled: torch.Tensor,
    num_rejected: torch.Tensor,
) -> torch.Tensor:
    assert self.speculator is not None
    draft_tokens = self.speculator.propose(
        input_batch,
        last_hidden_states,
        aux_hidden_states,
        num_sampled,
        num_rejected,
        self.req_states.last_sampled_tokens,
        self.req_states.next_prefill_tokens,
        self.sampler.sampling_states.temperature.gpu,
        self.sampler.sampling_states.seeds.gpu,
    )
    return draft_tokens

reset_mm_cache

reset_mm_cache() -> None
Source code in vllm/v1/worker/gpu/model_runner.py
def reset_mm_cache(self) -> None:
    pass

sample

sample(
    hidden_states: Tensor,
    input_batch: InputBatch,
    grammar_output: GrammarOutput | None,
) -> tuple[SamplerOutput, Tensor, Tensor]
Source code in vllm/v1/worker/gpu/model_runner.py
def sample(
    self,
    hidden_states: torch.Tensor,
    input_batch: InputBatch,
    grammar_output: GrammarOutput | None,
) -> tuple[SamplerOutput, torch.Tensor, torch.Tensor]:
    sample_hidden_states = hidden_states[input_batch.logits_indices]
    sample_pos = input_batch.positions[input_batch.logits_indices]
    logits = self.model.compute_logits(sample_hidden_states)
    if grammar_output is not None:
        # Apply grammar bitmask to the logits in-place.
        self.structured_outputs_worker.apply_grammar_bitmask(
            logits,
            input_batch,
            grammar_output.structured_output_request_ids,
            grammar_output.grammar_bitmask,
        )

    # Sample tokens and compute logprobs (if needed).
    sampler_output = self.sampler(
        logits,
        input_batch.expanded_idx_mapping,
        input_batch.idx_mapping_np,
        sample_pos,
    )

    if input_batch.num_draft_tokens == 0:
        # No draft tokens (common case).
        num_sampled = torch.ones(
            input_batch.num_reqs, dtype=torch.int32, device=self.device
        )
    else:
        # Rejection sampling for spec decoding.
        input_ids = input_batch.input_ids[input_batch.logits_indices]
        sampled_tokens, num_sampled = rejection_sample(
            sampler_output.sampled_token_ids,
            input_ids,
            input_batch.cu_num_logits,
            self.num_speculative_steps,
        )
        sampler_output.sampled_token_ids = sampled_tokens

    # Get the number of sampled and rejected tokens.
    # For chunked prefills, num_sampled and num_rejected are both 0.
    num_sampled, num_rejected = get_num_sampled_and_rejected(
        num_sampled,
        input_batch.seq_lens,
        input_batch.cu_num_logits,
        input_batch.idx_mapping,
        self.req_states.prefill_len.gpu,
    )
    return sampler_output, num_sampled, num_rejected

sample_tokens

sample_tokens(
    grammar_output: GrammarOutput | None,
) -> AsyncOutput | ModelRunnerOutput
Source code in vllm/v1/worker/gpu/model_runner.py
@torch.inference_mode()
def sample_tokens(
    self,
    grammar_output: GrammarOutput | None,
) -> AsyncOutput | ModelRunnerOutput:
    assert self.execute_model_state is not None
    hidden_states, input_batch, kv_connector_output = self.execute_model_state
    self.execute_model_state = None  # type: ignore

    sampler_output, num_sampled, num_rejected = self.sample(
        hidden_states, input_batch, grammar_output
    )
    prompt_logprobs_dict = self.prompt_logprobs_worker.compute_prompt_logprobs(
        self.model.compute_logits,
        hidden_states,
        input_batch,
        self.req_states.prefill_token_ids.gpu,
        self.req_states.num_computed_tokens.gpu,
        self.req_states.prompt_len,
        self.req_states.prefill_len.np,
        self.req_states.num_computed_prefill_tokens,
    )

    # Prepare the model runner output.
    model_runner_output = ModelRunnerOutput(
        req_ids=input_batch.req_ids,
        # NOTE(woosuk): req_id_to_index is unused in this model runner.
        # Only for compatibility with the existing model runner and scheduler.
        req_id_to_index={req_id: i for i, req_id in enumerate(input_batch.req_ids)},
        sampled_token_ids=None,  # type: ignore
        prompt_logprobs_dict=prompt_logprobs_dict,  # type: ignore[arg-type]
        kv_connector_output=kv_connector_output,
    )
    async_output = AsyncOutput(
        model_runner_output=model_runner_output,
        sampler_output=sampler_output,
        num_sampled_tokens=num_sampled,
        copy_stream=self.output_copy_stream,
        copy_event=self.output_copy_event,
    )

    # Postprocess results and update request states.
    # NOTE: This is intentionally done after creating the AsyncOutput,
    # ensuring that `copy_event` is recorded before calling postprocess.
    # This sequencing may slightly reduce latency as async D2H copy does not
    # need to wait for the postprocess to finish.
    self.postprocess(
        input_batch, sampler_output.sampled_token_ids, num_sampled, num_rejected
    )
    if self.do_spec_decode:
        draft_tokens = self.propose_draft(
            input_batch,
            hidden_states,
            None,  # aux_hidden_states
            num_sampled,
            num_rejected,
        )
        self.req_states.draft_tokens[input_batch.idx_mapping] = draft_tokens

    if self.use_async_scheduling:
        return async_output
    return async_output.get_output()

update_max_model_len

update_max_model_len(max_model_len: int) -> None
Source code in vllm/v1/worker/gpu/model_runner.py
def update_max_model_len(self, max_model_len: int) -> None:
    self.max_model_len = max_model_len
    self.req_states.max_model_len = max_model_len

update_requests

update_requests(scheduler_output: SchedulerOutput) -> None
Source code in vllm/v1/worker/gpu/model_runner.py
def update_requests(self, scheduler_output: SchedulerOutput) -> None:
    # Add new blocks for the existing requests.
    cached_reqs = scheduler_output.scheduled_cached_reqs
    for i, req_id in enumerate(cached_reqs.req_ids):
        req_index = self.req_states.req_id_to_index[req_id]
        req_new_block_ids = cached_reqs.new_block_ids[i]
        if req_new_block_ids is not None:
            self.block_tables.append_block_ids(
                req_index, req_new_block_ids, overwrite=False
            )

warmup_for_prefill

warmup_for_prefill() -> None
Source code in vllm/v1/worker/gpu/model_runner.py
def warmup_for_prefill(self) -> None:
    # For FlashInfer, we would like to execute a dummy prefill run
    # to trigger JIT compilation.
    if all("FLASHINFER" in b.get_name() for b in self.attn_backends.values()):
        self._dummy_run(self.max_num_tokens, skip_attn=False)
        torch.cuda.synchronize()